Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 038505    DOI: 10.1088/1674-1056/25/3/038505
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Design and fabrication of multi-channel photodetector array monolithic with arrayed waveguide grating

Qian-Qian Lv(吕倩倩), Pan Pan(潘盼), Han Ye(叶焓), Dong-Dong Yin(尹冬冬),Yu-Bing Wang(王玉冰), Xiao-Hong Yang(杨晓红), Qin Han(韩勤)
State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, China
Abstract  We have provided optical simulations of the evanescently coupled waveguide photodiodes integrated with a 13-channels AWGs. The photodiode could exhibit high internal efficiency by appropriate choice of layers geometry and refractive index. Aseamless joint structure has been designed and fabricated for integrating the output waveguides of AWGs with the evanescently coupled waveguide photodiode array. The highest simulation quantum efficiency could achieve 92% when the matching layer thickness of the PD is 120 nm and the insertion length is 2 μm. The fabricated PD with 320-nm-thick matching layer and 2-μm-length insertion matching layer present a responsivity of 0.87 A/W.
Keywords:  photodetector array      monolithic      evanescent coupling      arrayed waveguide grating  
Received:  23 July 2015      Revised:  01 December 2015      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.82.Bq (Design and performance testing of integrated-optical systems)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant Nos. 2013AA031401, 2015AA016902, and 2015AA016904), the National Natural Science Foundation of China (Grant Nos. 61176053, 61274069, and 61435002), and the National Basic Research Program of China (Grant Nos. 2012CB933503 and 2013CB932904).
Corresponding Authors:  Qin Han     E-mail:  hanqin@semi.ac.cn

Cite this article: 

Qian-Qian Lv(吕倩倩), Pan Pan(潘盼), Han Ye(叶焓), Dong-Dong Yin(尹冬冬),Yu-Bing Wang(王玉冰), Xiao-Hong Yang(杨晓红), Qin Han(韩勤) Design and fabrication of multi-channel photodetector array monolithic with arrayed waveguide grating 2016 Chin. Phys. B 25 038505

[1] Bottacchi S, Beling A, Matiss A, Nielsen M L, Steffan A G, Unterbörsch G and Umbach A 2010 IEEE J. Select. Topics Quantum Electron. 16 1099
[2] Coldren L A, Nicholes S C, Johansson L, Ristic S, Guzzon R S, Norberg E J and Krishnamachari U 2011 J. Lightw. Technol. 29 554
[3] Pan P, An J M, Wang H J, Wang Y, Zhang J S, Wang L L, Dai H Q, Zhang X G, Wu Y D and Hu X W 2014 Chin. Phys. B 23 044210
[4] Yoshikuni Y 2002 IEEE J. Select. Topics Quantum Electron. 8 1102
[5] Nagarajan R, Joyner C H, Schneider R P, et al. 2005 IEEE J. Select. Topics Quantum Electron. 11 50
[6] Beling A and Campbell J C 2009 J. Lightw. Technol. 27 343
[7] Zhang Y, Zuo Y H, Guo J C, Ding W C, Cheng B W, Yu J Z and Wang Q M 2009 Chin. Phys. B 18 225
[8] Bach H G, Beling A, Mekonnen G G, Kunkel R, Schmidt D, Ebert W, Seeger A, Stollberg M and Schlaak W 2004 IEEE J. Select. Topics Quantum Electron. 10 668
[9] Park J W 2010 IEEE Photon. Technol. Lett. 22 975
[10] Takeuchi T, Nakata T, Makita K and Yamaguchi M 2000 Electron. Lett. 36 972
[11] Demiguel S, Li N, Li X W, Zheng X G, Kim J, Campbell J C, Lu H F and Anselm A 2003 IEEE Photon. Technol. Lett. 15 1761
[12] Ghirardi F, Bruno A, Mersali B, Brandon J, Giraudet L, Scavennec A and Carenco A 1995 J. Lightw. Technol. 13 1536
[13] Liu S Q, Yang X H, Liu Y, Li B and Han Q 2013 Chin. Phys. B 22 108503
[1] A terahertz on-chip InP-based power combiner designed using coupled-grounded coplanar waveguide lines
Huali Zhu(朱华利), Yong Zhang(张勇), Kun Qu(屈坤), Haomiao Wei(魏浩淼), Yukun Li(黎雨坤), Yuehang Xu(徐跃杭), and Ruimin Xu(徐锐敏). Chin. Phys. B, 2021, 30(12): 120701.
[2] A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings
Changjian Xie(解长健), Xihua Zou (邹喜华), Fang Zou(邹放), Lianshan Yan(闫连山), Wei Pan(潘炜), and Yong Zhang(张永). Chin. Phys. B, 2021, 30(12): 120703.
[3] Optimization of terahertz monolithic integrated frequency multiplier based on trap-assisted physics model of THz Schottky barrier varactor
Lu-Wei Qi(祁路伟), Jin Meng(孟进), Xiao-Yu Liu(刘晓宇), Yi Weng(翁祎), Zhi-Cheng Liu(刘志成), De-Hai Zhang(张德海)†, Jing-Tao Zhou(周静涛)‡, and Zhi Jin(金智). Chin. Phys. B, 2020, 29(10): 104212.
[4] Damage effects and mechanism of the silicon NPN monolithic composite transistor induced by high-power microwaves
Hui Li(李慧), Chang-Chun Chai(柴常春), Yu-Qian Liu(刘彧千), Han Wu(吴涵), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2018, 27(8): 088502.
[5] 16-channel dual-tuning wavelength division multiplexer/demultiplexer
Pei Yuan(袁配), Yue Wang(王玥), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), Xiong-Wei Hu(胡雄伟). Chin. Phys. B, 2018, 27(12): 124208.
[6] Broadband microwave frequency doubler based on left-handed nonlinear transmission lines
Jie Huang(黄杰), Wenwen Gu(顾雯雯), Qian Zhao(赵倩). Chin. Phys. B, 2017, 26(3): 037306.
[7] A G-band terahertz monolithic integrated amplifier in 0.5-μm InP double heterojunction bipolar transistor technology
Ou-Peng Li(李欧鹏), Yong Zhang(张勇), Rui-Min Xu(徐锐敏), Wei Cheng(程伟), Yuan Wang(王元), Bing Niu(牛斌), Hai-Yan Lu(陆海燕). Chin. Phys. B, 2016, 25(5): 058401.
[8] Novel wavelength-accurate InP-based arrayed waveguide grating
Pan Pan (潘盼), An Jun-Ming (安俊明), Wang Hong-Jie (王红杰), Wang Yue (王玥), Zhang Jia-Shun (张家顺), Wang Liang-Liang (王亮亮), Dai Hong-Qing (代红庆), Zhang Xiao-Guang (张晓光), Wu Yuan-Da (吴远大), Hu Xiong-Wei (胡雄伟). Chin. Phys. B, 2014, 23(4): 044210.
[9] Four distributed feedback laser array integrated with multimode-interference and semiconductor optical amplifier
Ma Li (马丽), Zhu Hong-Liang (朱洪亮), Liang Song (梁松), Zhao Ling-Juan (赵玲娟), Chen Ming-Hua (陈明华). Chin. Phys. B, 2013, 22(5): 054211.
[10] A monolithic distributed phase shifter based on right-handed nonlinear transmission lines at 30 GHz
Huang Jie (黄杰), Zhao Qian (赵倩), Yang Hao (杨浩), Dong Jun-Rong (董军荣), Zhang Hai-Ying (张海英). Chin. Phys. B, 2013, 22(12): 127307.
[11] Design and fabrication of a high-performance evanescently coupled waveguide photodetector
Liu Shao-Qing (刘少卿), Yang Xiao-Hong (杨晓红), Liu Yu (刘宇), Li Bin (李彬), Han Qin (韩勤). Chin. Phys. B, 2013, 22(10): 108503.
[12] InP-based evanescently coupled high-responsivity photodiodes with extremely low dark current density integrated diluted waveguide at 1550 nm
Zuo Yu-Hua(左玉华),Cao Quan(曹权),Zhang Yun(张云), Zhang Ling-Zi(张岭梓), Guo Jian-Chuan(郭剑川),Xue Chun-Lai(薛春来),Cheng Bu-Wen(成步文),and Wang Qi-Ming(王启明). Chin. Phys. B, 2011, 20(1): 018504.
[13] Optical matching layer structures in evanescent coupling photodiodes at a wavelength of 1.55μm: physics, design and simulation
Zhang Yun(张云), Zuo Yu-Hua(左玉华), Guo Jian-Chuan(郭剑川), Ding Wu-Chang(丁武昌), Cheng Bu-Wen(成步文), Yu Jin-Zhong(余金中), and Wang Qi-Ming(王启明). Chin. Phys. B, 2009, 18(1): 225-230.
[14] Design of novel three port optical gates scheme for the integration of large optical cavity electroabsorption modulators and evanescently-coupled photodiodes
Liao Zai-Yi(廖栽宜), Yang Hua(杨华), and Wang Wei(王圩) . Chin. Phys. B, 2008, 17(7): 2557-2561.
No Suggested Reading articles found!