Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117304    DOI: 10.1088/1674-1056/ac2489
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structures and topological properties of TeSe2 monolayers

Zhengyang Wan(万正阳)1, Hao Huan(郇昊)1, Hairui Bao(鲍海瑞)1, Xiaojuan Liu(刘晓娟)1, and Zhongqin Yang(杨中芹)1,2,†
1 State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences(MOE) & Department of Physics, Fudan University, Shanghai 200433, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Abstract  The successfully experimental fabrication of two-dimensional Te monolayer films [Phys. Rev. Lett. 119 106101 (2017)] has promoted the researches on the group-VI monolayer materials. In this work, the electronic structures and topological properties of a group-VI binary compound of TeSe2 monolayers are studied based on the density functional theory and Wannier function method. Three types of structures, namely, α-TeSe2, β-TeSe2, and γ-TeSe2, are proposed for the TeSe2 monolayer among which the α-TeSe2 is found being the most stable. All the three structures are semiconductors with indirect band gaps. Very interestingly, the γ-TeSe2 monolayer becomes a quantum spin Hall (QSH) insulator with a global nontrivial energy gap of 0.14 eV when a 3.5% compressive strain is applied. The opening of the global band gap is understood by the competition between the decrease of the local band dispersion and the weakening of the interactions between the Se px, py orbitals and Te px, py orbitals during the process. Our work realizes topological states in the group-VI monolayers and promotes the potential applications of the materials in spintronics and quantum computations.
Keywords:  two-dimensional material      monolayer TeSe2      quantum spin Hall effect      topological insulator  
Received:  27 July 2021      Revised:  02 September 2021      Accepted manuscript online:  08 September 2021
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.43.Nq (Quantum phase transitions)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  31.15.ae (Electronic structure and bonding characteristics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574051 and 11874117) and Natural Science Foundation of Shanghai, China (Grant No. 21ZR1408200).
Corresponding Authors:  Zhongqin Yang     E-mail:  zyang@fudan.edu.cn

Cite this article: 

Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹) Electronic structures and topological properties of TeSe2 monolayers 2021 Chin. Phys. B 30 117304

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[3] Qiao Z H, Yang S Y, Feng W X, Tse W K, Ding J, Yao Y G, Wang J and Niu Q 2010 Phys. Rev. B 82 161414(R)
[4] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[5] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[6] Wang H, Xu M and Zheng R K 2020 Acta Phys. Sin. 69 017301 (in Chinese)
[7] Hou Y H, Zhang T, Sun J T, Liu L W, Yao Y G and Wang Y L 2020 Chin. Phys. B 29 097304
[8] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[9] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[10] Fang W Y, Kang W B, Zhao J and Zhang P C 2020 Chin. Phys. B 29 096301
[11] Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L and Wu K H 2016 Nat. Chem. 8 563
[12] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin Diego, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513
[13] Guzmán-Verr G G and Lew Yan Voon L C 2007 Phys. Rev. B 76 075131
[14] Chen L, Liu C C, Feng B J, He X Y, Cheng P, Ding Z J, Meng S, Yao Y G and Wu K H 2012 Phys. Rev. Lett. 109 056804
[15] Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
[16] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat Mat. 14 1020
[17] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372
[18] Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D and Ye P D 2014 ACS Nano 8 4033
[19] Cheng F and He B 2016 Chin. Phys. Lett. 33 057301
[20] Zhang S L, Yan Z, Li Y F, Chen Z F and Zeng H B 2015 Angew. Chem. Int. Ed. 54 3112
[21] Ji J P, Song X F, Liu J Z, Yan Z, Huo C X, Zhang S L, Su M, Liao L, Wang W H, Ni Z H, Hao Y F and Zeng H B 2016 Nat. Commun. 7 13352
[22] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J and Claessen R 2017 Science 357 287
[23] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147
[24] Xu X D, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[25] Cheiwchanchamnangij T and Lambrecht W R L 2012 Phys. Rev. B 85 205302
[26] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[27] McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater. 27 612
[28] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[29] Zhang J Y, Zhao B, Zhou T, Xue Y, Ma C L and Yang Z Q 2018 Phys. Rev. B 97 085401
[30] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[31] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167
[32] Zhu Z L, Cai X L, Yi S, Chen J L, Dai Y W, Niu C Y, Guo Z X, Xie M H, Liu F, Cho J H, Jia Y and Zhang Z Y 2017 Phys. Rev. Lett. 119 106101
[33] Yan C L, Wang C, Zhou L W, Guo P J, Liu K, Lu Z Y, Cheng Z H, Chai Y, Pan A L and Ji W 2020 Chin. Phys. B 29 097103
[34] Qian X F, Liu J W, Fu L and Li J 2014 Science 346 1344
[35] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[36] Blöchl P E 1994 Phys. Rev. B 50 17953
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[40] Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput Phys Commun. 224 405
[41] Wu B Z, Yin J R, Ding Y H and Zhang P 2017 Sci. China Mater. 60 747
[42] Liu C C, Guan S, Song Z G, Yang S Y A, Yang J B and Yao Y G 2014 Phys. Rev. B 90 085431
[43] Zhou T, Zhang J Y, Xue Y, Zhao B, Zhang H S, Jiang H and Yang Z Q 2016 Phys. Rev. B 94 235449
[44] Liang Q F, Yu R, Zhou J and Hu X 2016 Phys. Rev. B 93 035135
[45] Xue Y, Zhang J Y, Zhao B, Wei X Y and Yang Z Q 2018 Nanoscale 10 8569
[46] Xue Y, Zhao B, Zhu Y, Zhou T, Zhang J Y, Li N B, Jiang H and Yang Z Q 2018 NPG Asia Mater. 10 467
[47] Amorim B, Cortijo A, Juan F, Grushin A G, Guinea F, Gutiérrez-Rubio A, Ochoa H, Parente V, Roldán R, San-Jose P, Schiefele J, Sturla M and Vozmediano M A H 2016 Phys. Rep. 617 1
[48] Bousige C, Balima F, Machon D, Pinheiro G S, Torres-Dias A, Nicolle J, Kalita D, Bendiab N, Marty L, Bouchiat V, Montagnac G, Souza Filho A G, Poncharal P and San-Miguel A 2017 Nano Lett. 17 21
[49] Choi S M, Jhi S H and Son Y W 2010 Phys. Rev. B 81 081407(R)
[50] Ren Y and Cheng F 2017 Chin. Phys. Lett. 34 027302
[51] Xi X X, Berger H, Forró L, Shan J and Mak K F 2016 Phys. Rev. Lett. 117 106801
[52] Yu R, Qi X L, Bernevig A, Fang Z and Dai X 2011 Phys. Rev. B 84 075119
[1] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[2] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[3] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[4] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[5] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[6] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[7] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[8] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[9] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[10] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[11] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[12] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[13] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[14] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
[15] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
No Suggested Reading articles found!