Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117304    DOI: 10.1088/1674-1056/ac2489
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structures and topological properties of TeSe2 monolayers

Zhengyang Wan(万正阳)1, Hao Huan(郇昊)1, Hairui Bao(鲍海瑞)1, Xiaojuan Liu(刘晓娟)1, and Zhongqin Yang(杨中芹)1,2,†
1 State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences(MOE) & Department of Physics, Fudan University, Shanghai 200433, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Abstract  The successfully experimental fabrication of two-dimensional Te monolayer films [Phys. Rev. Lett. 119 106101 (2017)] has promoted the researches on the group-VI monolayer materials. In this work, the electronic structures and topological properties of a group-VI binary compound of TeSe2 monolayers are studied based on the density functional theory and Wannier function method. Three types of structures, namely, α-TeSe2, β-TeSe2, and γ-TeSe2, are proposed for the TeSe2 monolayer among which the α-TeSe2 is found being the most stable. All the three structures are semiconductors with indirect band gaps. Very interestingly, the γ-TeSe2 monolayer becomes a quantum spin Hall (QSH) insulator with a global nontrivial energy gap of 0.14 eV when a 3.5% compressive strain is applied. The opening of the global band gap is understood by the competition between the decrease of the local band dispersion and the weakening of the interactions between the Se px, py orbitals and Te px, py orbitals during the process. Our work realizes topological states in the group-VI monolayers and promotes the potential applications of the materials in spintronics and quantum computations.
Keywords:  two-dimensional material      monolayer TeSe2      quantum spin Hall effect      topological insulator  
Received:  27 July 2021      Revised:  02 September 2021      Accepted manuscript online:  08 September 2021
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.43.Nq (Quantum phase transitions)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  31.15.ae (Electronic structure and bonding characteristics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574051 and 11874117) and Natural Science Foundation of Shanghai, China (Grant No. 21ZR1408200).
Corresponding Authors:  Zhongqin Yang     E-mail:  zyang@fudan.edu.cn

Cite this article: 

Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹) Electronic structures and topological properties of TeSe2 monolayers 2021 Chin. Phys. B 30 117304

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[3] Qiao Z H, Yang S Y, Feng W X, Tse W K, Ding J, Yao Y G, Wang J and Niu Q 2010 Phys. Rev. B 82 161414(R)
[4] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[5] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[6] Wang H, Xu M and Zheng R K 2020 Acta Phys. Sin. 69 017301 (in Chinese)
[7] Hou Y H, Zhang T, Sun J T, Liu L W, Yao Y G and Wang Y L 2020 Chin. Phys. B 29 097304
[8] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[9] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[10] Fang W Y, Kang W B, Zhao J and Zhang P C 2020 Chin. Phys. B 29 096301
[11] Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L and Wu K H 2016 Nat. Chem. 8 563
[12] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin Diego, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513
[13] Guzmán-Verr G G and Lew Yan Voon L C 2007 Phys. Rev. B 76 075131
[14] Chen L, Liu C C, Feng B J, He X Y, Cheng P, Ding Z J, Meng S, Yao Y G and Wu K H 2012 Phys. Rev. Lett. 109 056804
[15] Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
[16] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat Mat. 14 1020
[17] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372
[18] Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D and Ye P D 2014 ACS Nano 8 4033
[19] Cheng F and He B 2016 Chin. Phys. Lett. 33 057301
[20] Zhang S L, Yan Z, Li Y F, Chen Z F and Zeng H B 2015 Angew. Chem. Int. Ed. 54 3112
[21] Ji J P, Song X F, Liu J Z, Yan Z, Huo C X, Zhang S L, Su M, Liao L, Wang W H, Ni Z H, Hao Y F and Zeng H B 2016 Nat. Commun. 7 13352
[22] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J and Claessen R 2017 Science 357 287
[23] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147
[24] Xu X D, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[25] Cheiwchanchamnangij T and Lambrecht W R L 2012 Phys. Rev. B 85 205302
[26] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[27] McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater. 27 612
[28] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[29] Zhang J Y, Zhao B, Zhou T, Xue Y, Ma C L and Yang Z Q 2018 Phys. Rev. B 97 085401
[30] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[31] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167
[32] Zhu Z L, Cai X L, Yi S, Chen J L, Dai Y W, Niu C Y, Guo Z X, Xie M H, Liu F, Cho J H, Jia Y and Zhang Z Y 2017 Phys. Rev. Lett. 119 106101
[33] Yan C L, Wang C, Zhou L W, Guo P J, Liu K, Lu Z Y, Cheng Z H, Chai Y, Pan A L and Ji W 2020 Chin. Phys. B 29 097103
[34] Qian X F, Liu J W, Fu L and Li J 2014 Science 346 1344
[35] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[36] Blöchl P E 1994 Phys. Rev. B 50 17953
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[40] Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput Phys Commun. 224 405
[41] Wu B Z, Yin J R, Ding Y H and Zhang P 2017 Sci. China Mater. 60 747
[42] Liu C C, Guan S, Song Z G, Yang S Y A, Yang J B and Yao Y G 2014 Phys. Rev. B 90 085431
[43] Zhou T, Zhang J Y, Xue Y, Zhao B, Zhang H S, Jiang H and Yang Z Q 2016 Phys. Rev. B 94 235449
[44] Liang Q F, Yu R, Zhou J and Hu X 2016 Phys. Rev. B 93 035135
[45] Xue Y, Zhang J Y, Zhao B, Wei X Y and Yang Z Q 2018 Nanoscale 10 8569
[46] Xue Y, Zhao B, Zhu Y, Zhou T, Zhang J Y, Li N B, Jiang H and Yang Z Q 2018 NPG Asia Mater. 10 467
[47] Amorim B, Cortijo A, Juan F, Grushin A G, Guinea F, Gutiérrez-Rubio A, Ochoa H, Parente V, Roldán R, San-Jose P, Schiefele J, Sturla M and Vozmediano M A H 2016 Phys. Rep. 617 1
[48] Bousige C, Balima F, Machon D, Pinheiro G S, Torres-Dias A, Nicolle J, Kalita D, Bendiab N, Marty L, Bouchiat V, Montagnac G, Souza Filho A G, Poncharal P and San-Miguel A 2017 Nano Lett. 17 21
[49] Choi S M, Jhi S H and Son Y W 2010 Phys. Rev. B 81 081407(R)
[50] Ren Y and Cheng F 2017 Chin. Phys. Lett. 34 027302
[51] Xi X X, Berger H, Forró L, Shan J and Mak K F 2016 Phys. Rev. Lett. 117 106801
[52] Yu R, Qi X L, Bernevig A, Fang Z and Dai X 2011 Phys. Rev. B 84 075119
[1] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[2] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[3] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[4] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[5] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[6] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[7] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
[8] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[9] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[10] A double quantum dot defined by top gates in a single crystalline InSb nanosheet
Yuanjie Chen(陈元杰), Shaoyun Huang(黄少云), Jingwei Mu(慕经纬), Dong Pan(潘东), Jianhua Zhao(赵建华), and Hong-Qi Xu(徐洪起). Chin. Phys. B, 2021, 30(12): 128501.
[11] Two-dimensional topological semimetals
Xiaolong Feng(冯晓龙), Jiaojiao Zhu(朱娇娇), Weikang Wu(吴维康), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(10): 107304.
[12] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[13] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[14] Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure
Longxiang Xu(徐龙翔), Wengang Lu(吕文刚), Chen Hu(胡晨), Qixun Guo(郭奇勋), Shuai Shang(尚帅), Xiulan Xu(徐秀兰), Guanghua Yu(于广华), Yu Yan(岩雨), Lihua Wang(王立华), Jiao Teng(滕蛟). Chin. Phys. B, 2020, 29(7): 077304.
[15] Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉). Chin. Phys. B, 2020, 29(7): 077201.
No Suggested Reading articles found!