Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117305    DOI: 10.1088/1674-1056/abfbd8
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Pure spin-current diode based on interacting quantum dot tunneling junction

Zhengzhong Zhang(张正中)1,†, Min Yu(余敏)2,†, Rui Bo(薄锐)1, Chao Wang(王超)1, and Hao Liu(刘昊)1,‡
1 Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003, China;
2 The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, China
Abstract  A magnetic field-controlled spin-current diode is theoretically proposed, which consists of a junction with an interacting quantum dot sandwiched between a pair of nonmagnetic electrodes. By applying a spin bias VS across the junction, a pure spin current can be obtained in a certain gate voltage regime,regardless of whether the Coulomb repulsion energy exists. More interestingly, if we applied an external magnetic field on the quantum dot, we observed a clear asymmetry in the spectrum of spin current IS as a function of spin bias, while the charge current always decays to zero in the Coulomb blockade regime. Such asymmetry in the current profile suggests a spin diode-like behavior with respect to the spin bias, while the net charge through the device is almost zero. Different from the traditional charge current diode, this design can change the polarity direction and rectifying ability by adjusting the external magnetic field, which is very convenient. This device scheme can be compatible with current technologies and has potential applications in spintronics or quantum processing.
Keywords:  pure spin current      semiconductor quantum dot      spin diode  
Received:  04 February 2021      Revised:  05 April 2021      Accepted manuscript online:  27 April 2021
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  73.21.La (Quantum dots)  
  85.35.-p (Nanoelectronic devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404322) and the Natural Science Foundation of Huai'an (Grant No. HAB202150).
Corresponding Authors:  Hao Liu     E-mail:  hyitliuh@163.com

Cite this article: 

Zhengzhong Zhang(张正中), Min Yu(余敏), Rui Bo(薄锐), Chao Wang(王超), and Hao Liu(刘昊) Pure spin-current diode based on interacting quantum dot tunneling junction 2021 Chin. Phys. B 30 117305

[1] Žutiá I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[2] Awschalom D D and Flatté M E 2007 Nat. Phys. 3 153
[3] Prinz G A 1998 Science 282 1660
[4] Han W, Kawakami R K, Gmitra M and Fabian J 2014 Nat. Nanotechnol. 9 794
[5] Long W, Sun Q F, Guo H and Wang J 2003 Appl. Phys. Lett. 83 1397
[6] Wang D K, Sun Q F and Guo H 2004 Phys. Rev. B 69 205312
[7] Gong W J, Zheng Y S and Lu T Q 2008 Appl. Phys. Lett. 92 042104
[8] Chi F, Zheng J and Sun L L 2008 Appl. Phys. Lett. 92 172104
[9] Lu H F and Guo Y 2008 Appl. Phys. Lett. 92 062109
[10] Ye C Z, Nie Y H and Liang J Q 2011 Chin. Phys. B 20 127202
[11] Gariglio S 2020 Nature 580 458
[12] Noel P, Trier F, Vicente A L M, Bréhin J, Vaz D C, Garcia V, Fusil S, Barthélémy A Vila L, Bibes M and Attané J P 2020 Nature 580 483
[13] Li J X, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S and Shi J 2020 Nature 578 70
[14] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[15] Seki T, Hasegawa Y, Mitani S, Takahashi S, Imamura H, Maekawa S, Nitta J and Takanashi K 2008 Nat. Mater. 7 125
[16] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
[17] Bauer G E W, Saitoh E and Wees B J V 2012 Nat. Mater. 11 391
[18] Lim S, Rajamathi C R, Su S V, Felser C and Kapitulnik A 2018 Phys. Rev. B 98 121301
[19] Chen M J, Lee K, Li J, Cheng L, Wang Q S, Cai K M, Chia E E M, Chang H X and Yang H S 2020 ACS Nano 14 3539
[20] Zhou Y H, Yu S H and Zheng X H 2020 Carbon 170 361
[21] Frolov S M, Venkatesan A, Yu W, Folk J A and Wegscheider W 2009 Phys. Rev. Lett. 102 116802
[22] Frolov S M, Lu scher S, Yu W, Ren Y, Folk J A and Wegscheider W 2009 Nature 458 868
[23] Riordan M, Hoddeson L and Herring C 1999 Rev. Mod. Phys. 71 S336
[24] Kuo W and Chen C D 2002 Phys. Rev. B 65 104427
[25] Souza F M, Egues J C and Jauho A P 2007 Phys. Rev. B 75 165303
[26] Hamaya K, Kitabatake M, Shibata K, Jung M, Ishida S, Taniyama T, Hirakawa K, Arakawa Y and Machida T 2009 Phys. Rev. Lett. 102 236806
[27] Gergs N M, Bender S A, Duine R A and Schuricht D 2018 Phys. Rev. Lett. 120 017701
[28] Zheng J, Chi F and Guo Y 2018 Appl. Phys. Lett. 113 112404
[29] Okumura S, IshizukaH, Kato Y, Ohe J and Motome Y 2019 Appl. Phys. Lett. 115 012401
[30] Sun Q F and Xie X C 2015 Appl. Phys. Lett. 106 182407
[31] Chi F, Dai X N and Sun Lian L 2010 Appl. Phys. Lett. 96 082102
[32] Liu J and Cheng J 2015 Quantum Inf. Process. 14 479
[33] Rejec T, zitko R, Mravlje J and Ramsak A 2012 Phys. Rev. B 85 085117
[34] Chi F and Sun Q F 2010 Phys. Rev. B 81 075310
[35] Zhao H, Zhang X W, Liu X C and Yang Z Q 2020 Phys. Lett. A 384 126607
[36] Peng X K and Zhang Z Z 2019 Chin. Phys. B 28 127202
[37] Dubi Y and Ventra M D 2009 Phys. Rev. B 79 081302(R)
[38] Wiel W G V D, Franceschi S D, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
[1] A review of current research on spin currents and spin-orbit torques
Xiao-Yu Feng(冯晓玉), Qi-Han Zhang(张琪涵), Han-Wen Zhang(张瀚文), Yi Zhang(张祎), Rui Zhong(钟瑞), Bo-Wen Lu(卢博文), Jiang-Wei Cao(曹江伟), Xiao-Long Fan(范小龙). Chin. Phys. B, 2019, 28(10): 107105.
[2] Spin manipulation in semiconductor quantum dots qubit
Ke Wang(王柯), Hai-Ou Li(李海欧), Ming Xiao(肖明), Gang Cao(曹刚), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(9): 090308.
[3] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[4] Phase transition and charge transport through a triple dot device beyond the Kondo regime
Yong-Chen Xiong(熊永臣), Zhan-Wu Zhu(朱占武), Ze-Dong He(贺泽东). Chin. Phys. B, 2018, 27(10): 108503.
[5] Spin-dependent thermoelectric effect and spin battery mechanism in triple quantum dots with Rashba spin-orbital interaction
Wei-Ping Xu(徐卫平), Yu-Ying Zhang(张玉颖), Qiang Wang(王强), Yi-Hang Nie(聂一行). Chin. Phys. B, 2016, 25(11): 117307.
[6] Steady-state linear optical properties and Kerr nonlinear optical response of a four-level quantum dot with phonon-assisted transition
Yan-Chao She(佘彦超), Ting-Ting Luo(罗婷婷), Wei-Xi Zhang(张蔚曦),Mao-Wu Ran(冉茂武), Deng-Long Wang(王登龙). Chin. Phys. B, 2016, 25(1): 014202.
[7] Spin pumping through magnetic impurity effect
Deng Wei-Yin (邓伟胤), Sheng Li (盛利), Xing Ding-Yu (邢定钰). Chin. Phys. B, 2015, 24(8): 087202.
[8] A pure spin-current injector of semiconductor quantum dots with Andreev reflection and Rashba spin–orbit coupling
Ye Cheng-Zhi(叶成芝), Nie Yi-Hang(聂一行), and Liang Jiu-Qing(梁九卿) . Chin. Phys. B, 2011, 20(12): 127202.
[9] Modification of the spontaneous emission of quantum dots near the surface of a three-dimensional colloidal photonic crystal
Liu Zheng-Qi(刘正奇), Feng Tian-Hua(冯天华), Dai Qiao-Feng(戴峭峰), Wu Li-Jun(吴立军), Lan Sheng(兰胜), Ding Cai-Rong(丁才蓉), Wang He-Zhou(汪河洲), and Gopal Achanta Venu. Chin. Phys. B, 2010, 19(11): 114210.
[10] Size-dependent optical properties and carriers dynamics in CdSe/ZnS quantum dots
Ma Hong(马红), Ma Guo-Hong(马国宏), Wang Wen-Jun(王文军), Gao Xue-Xi(高学喜), and Ma Hong-Liang(马洪良). Chin. Phys. B, 2008, 17(4): 1280-1285.
No Suggested Reading articles found!