CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Pure spin-current diode based on interacting quantum dot tunneling junction |
Zhengzhong Zhang(张正中)1,†, Min Yu(余敏)2,†, Rui Bo(薄锐)1, Chao Wang(王超)1, and Hao Liu(刘昊)1,‡ |
1 Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003, China; 2 The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, China |
|
|
Abstract A magnetic field-controlled spin-current diode is theoretically proposed, which consists of a junction with an interacting quantum dot sandwiched between a pair of nonmagnetic electrodes. By applying a spin bias VS across the junction, a pure spin current can be obtained in a certain gate voltage regime,regardless of whether the Coulomb repulsion energy exists. More interestingly, if we applied an external magnetic field on the quantum dot, we observed a clear asymmetry in the spectrum of spin current IS as a function of spin bias, while the charge current always decays to zero in the Coulomb blockade regime. Such asymmetry in the current profile suggests a spin diode-like behavior with respect to the spin bias, while the net charge through the device is almost zero. Different from the traditional charge current diode, this design can change the polarity direction and rectifying ability by adjusting the external magnetic field, which is very convenient. This device scheme can be compatible with current technologies and has potential applications in spintronics or quantum processing.
|
Received: 04 February 2021
Revised: 05 April 2021
Accepted manuscript online: 27 April 2021
|
PACS:
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
73.21.La
|
(Quantum dots)
|
|
85.35.-p
|
(Nanoelectronic devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404322) and the Natural Science Foundation of Huai'an (Grant No. HAB202150). |
Corresponding Authors:
Hao Liu
E-mail: hyitliuh@163.com
|
Cite this article:
Zhengzhong Zhang(张正中), Min Yu(余敏), Rui Bo(薄锐), Chao Wang(王超), and Hao Liu(刘昊) Pure spin-current diode based on interacting quantum dot tunneling junction 2021 Chin. Phys. B 30 117305
|
[1] Žutiá I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323 [2] Awschalom D D and Flatté M E 2007 Nat. Phys. 3 153 [3] Prinz G A 1998 Science 282 1660 [4] Han W, Kawakami R K, Gmitra M and Fabian J 2014 Nat. Nanotechnol. 9 794 [5] Long W, Sun Q F, Guo H and Wang J 2003 Appl. Phys. Lett. 83 1397 [6] Wang D K, Sun Q F and Guo H 2004 Phys. Rev. B 69 205312 [7] Gong W J, Zheng Y S and Lu T Q 2008 Appl. Phys. Lett. 92 042104 [8] Chi F, Zheng J and Sun L L 2008 Appl. Phys. Lett. 92 172104 [9] Lu H F and Guo Y 2008 Appl. Phys. Lett. 92 062109 [10] Ye C Z, Nie Y H and Liang J Q 2011 Chin. Phys. B 20 127202 [11] Gariglio S 2020 Nature 580 458 [12] Noel P, Trier F, Vicente A L M, Bréhin J, Vaz D C, Garcia V, Fusil S, Barthélémy A Vila L, Bibes M and Attané J P 2020 Nature 580 483 [13] Li J X, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S and Shi J 2020 Nature 578 70 [14] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910 [15] Seki T, Hasegawa Y, Mitani S, Takahashi S, Imamura H, Maekawa S, Nitta J and Takanashi K 2008 Nat. Mater. 7 125 [16] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778 [17] Bauer G E W, Saitoh E and Wees B J V 2012 Nat. Mater. 11 391 [18] Lim S, Rajamathi C R, Su S V, Felser C and Kapitulnik A 2018 Phys. Rev. B 98 121301 [19] Chen M J, Lee K, Li J, Cheng L, Wang Q S, Cai K M, Chia E E M, Chang H X and Yang H S 2020 ACS Nano 14 3539 [20] Zhou Y H, Yu S H and Zheng X H 2020 Carbon 170 361 [21] Frolov S M, Venkatesan A, Yu W, Folk J A and Wegscheider W 2009 Phys. Rev. Lett. 102 116802 [22] Frolov S M, Lu scher S, Yu W, Ren Y, Folk J A and Wegscheider W 2009 Nature 458 868 [23] Riordan M, Hoddeson L and Herring C 1999 Rev. Mod. Phys. 71 S336 [24] Kuo W and Chen C D 2002 Phys. Rev. B 65 104427 [25] Souza F M, Egues J C and Jauho A P 2007 Phys. Rev. B 75 165303 [26] Hamaya K, Kitabatake M, Shibata K, Jung M, Ishida S, Taniyama T, Hirakawa K, Arakawa Y and Machida T 2009 Phys. Rev. Lett. 102 236806 [27] Gergs N M, Bender S A, Duine R A and Schuricht D 2018 Phys. Rev. Lett. 120 017701 [28] Zheng J, Chi F and Guo Y 2018 Appl. Phys. Lett. 113 112404 [29] Okumura S, IshizukaH, Kato Y, Ohe J and Motome Y 2019 Appl. Phys. Lett. 115 012401 [30] Sun Q F and Xie X C 2015 Appl. Phys. Lett. 106 182407 [31] Chi F, Dai X N and Sun Lian L 2010 Appl. Phys. Lett. 96 082102 [32] Liu J and Cheng J 2015 Quantum Inf. Process. 14 479 [33] Rejec T, zitko R, Mravlje J and Ramsak A 2012 Phys. Rev. B 85 085117 [34] Chi F and Sun Q F 2010 Phys. Rev. B 81 075310 [35] Zhao H, Zhang X W, Liu X C and Yang Z Q 2020 Phys. Lett. A 384 126607 [36] Peng X K and Zhang Z Z 2019 Chin. Phys. B 28 127202 [37] Dubi Y and Ventra M D 2009 Phys. Rev. B 79 081302(R) [38] Wiel W G V D, Franceschi S D, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|