Pure spin-current diode based on interacting quantum dot tunneling junction
Zhengzhong Zhang(张正中)1,†, Min Yu(余敏)2,†, Rui Bo(薄锐)1, Chao Wang(王超)1, and Hao Liu(刘昊)1,‡
1 Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003, China; 2 The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, China
Abstract A magnetic field-controlled spin-current diode is theoretically proposed, which consists of a junction with an interacting quantum dot sandwiched between a pair of nonmagnetic electrodes. By applying a spin bias VS across the junction, a pure spin current can be obtained in a certain gate voltage regime,regardless of whether the Coulomb repulsion energy exists. More interestingly, if we applied an external magnetic field on the quantum dot, we observed a clear asymmetry in the spectrum of spin current IS as a function of spin bias, while the charge current always decays to zero in the Coulomb blockade regime. Such asymmetry in the current profile suggests a spin diode-like behavior with respect to the spin bias, while the net charge through the device is almost zero. Different from the traditional charge current diode, this design can change the polarity direction and rectifying ability by adjusting the external magnetic field, which is very convenient. This device scheme can be compatible with current technologies and has potential applications in spintronics or quantum processing.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404322) and the Natural Science Foundation of Huai'an (Grant No. HAB202150).
Corresponding Authors:
Hao Liu
E-mail: hyitliuh@163.com
Cite this article:
Zhengzhong Zhang(张正中), Min Yu(余敏), Rui Bo(薄锐), Chao Wang(王超), and Hao Liu(刘昊) Pure spin-current diode based on interacting quantum dot tunneling junction 2021 Chin. Phys. B 30 117305
[1] Žutiá I, Fabian J and Sarma S D 2004 Rev. Mod. Phys.76 323 [2] Awschalom D D and Flatté M E 2007 Nat. Phys.3 153 [3] Prinz G A 1998 Science282 1660 [4] Han W, Kawakami R K, Gmitra M and Fabian J 2014 Nat. Nanotechnol.9 794 [5] Long W, Sun Q F, Guo H and Wang J 2003 Appl. Phys. Lett.83 1397 [6] Wang D K, Sun Q F and Guo H 2004 Phys. Rev. B69 205312 [7] Gong W J, Zheng Y S and Lu T Q 2008 Appl. Phys. Lett.92 042104 [8] Chi F, Zheng J and Sun L L 2008 Appl. Phys. Lett.92 172104 [9] Lu H F and Guo Y 2008 Appl. Phys. Lett.92 062109 [10] Ye C Z, Nie Y H and Liang J Q 2011 Chin. Phys. B20 127202 [11] Gariglio S 2020 Nature580 458 [12] Noel P, Trier F, Vicente A L M, Bréhin J, Vaz D C, Garcia V, Fusil S, Barthélémy A Vila L, Bibes M and Attané J P 2020 Nature580 483 [13] Li J X, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S and Shi J 2020 Nature578 70 [14] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science306 1910 [15] Seki T, Hasegawa Y, Mitani S, Takahashi S, Imamura H, Maekawa S, Nitta J and Takanashi K 2008 Nat. Mater.7 125 [16] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature455 778 [17] Bauer G E W, Saitoh E and Wees B J V 2012 Nat. Mater.11 391 [18] Lim S, Rajamathi C R, Su S V, Felser C and Kapitulnik A 2018 Phys. Rev. B98 121301 [19] Chen M J, Lee K, Li J, Cheng L, Wang Q S, Cai K M, Chia E E M, Chang H X and Yang H S 2020 ACS Nano14 3539 [20] Zhou Y H, Yu S H and Zheng X H 2020 Carbon170 361 [21] Frolov S M, Venkatesan A, Yu W, Folk J A and Wegscheider W 2009 Phys. Rev. Lett.102 116802 [22] Frolov S M, Lu scher S, Yu W, Ren Y, Folk J A and Wegscheider W 2009 Nature458 868 [23] Riordan M, Hoddeson L and Herring C 1999 Rev. Mod. Phys. 71 S336 [24] Kuo W and Chen C D 2002 Phys. Rev. B65 104427 [25] Souza F M, Egues J C and Jauho A P 2007 Phys. Rev. B75 165303 [26] Hamaya K, Kitabatake M, Shibata K, Jung M, Ishida S, Taniyama T, Hirakawa K, Arakawa Y and Machida T 2009 Phys. Rev. Lett.102 236806 [27] Gergs N M, Bender S A, Duine R A and Schuricht D 2018 Phys. Rev. Lett.120 017701 [28] Zheng J, Chi F and Guo Y 2018 Appl. Phys. Lett.113 112404 [29] Okumura S, IshizukaH, Kato Y, Ohe J and Motome Y 2019 Appl. Phys. Lett.115 012401 [30] Sun Q F and Xie X C 2015 Appl. Phys. Lett.106 182407 [31] Chi F, Dai X N and Sun Lian L 2010 Appl. Phys. Lett.96 082102 [32] Liu J and Cheng J 2015 Quantum Inf. Process.14 479 [33] Rejec T, zitko R, Mravlje J and Ramsak A 2012 Phys. Rev. B85 085117 [34] Chi F and Sun Q F 2010 Phys. Rev. B81 075310 [35] Zhao H, Zhang X W, Liu X C and Yang Z Q 2020 Phys. Lett. A384 126607 [36] Peng X K and Zhang Z Z 2019 Chin. Phys. B28 127202 [37] Dubi Y and Ventra M D 2009 Phys. Rev. B79 081302(R) [38] Wiel W G V D, Franceschi S D, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys.75 1
Qubits based on semiconductor quantum dots Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.