Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097503    DOI: 10.1088/1674-1056/ac0db0
RAPID COMMUNICATION Prev   Next  

Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy

Heng-An Zhou(周恒安)1,2, Li Cai(蔡立)1,2, Teng Xu(许腾)1,2, Yonggang Zhao(赵永刚)1,2, and Wanjun Jiang(江万军)1,2,†
1 State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China;
2 Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
Abstract  Compensated ferrimagnetic insulators are particularly interesting for enabling functional spintronic, optical, and microwave devices. Among many different garnets, Gd3Fe5O12 (GdIG) is a representative compensated ferrimagnetic insulator. In this paper, we will study the evolution of the surface morphology, the magnetic properties, and the magnetization compensation through changing the following parameters: the annealing temperature, the growth temperature, the annealing duration, and the choice of different single crystalline garnet substrates. Our objective is to find the optimized growth condition of the GdIG films, for the purpose of achieving a strong perpendicular magnetic anisotropy (PMA) and a flat surface, together with a small effective damping parameter. Through our experiments, we have found that the surface roughness approaching 0.15 nm can be obtained by choosing the growth temperature around 700 ℃, together with an enhanced PMA. We have also found the modulation of magnetic anisotropy by choosing different single crystalline garnet substrates which change the tensile strain to the compressive strain. A measure of the effective magnetic damping parameter (αeff=0.04±0.01) through a spin pumping experiment in a GdIG/Pt bilayer is also made. Through optimizing the growth dynamics of GdIG films, our results could be useful for synthesizing garnet films with a PMA, which could be beneficial for the future development of ferrimagnetic spintronics.
Keywords:  ferrimagnet      perpendicular magnetic anisotropy      ferrite and garnet devices      crystal growth  
Received:  09 May 2021      Revised:  15 June 2021      Accepted manuscript online:  23 June 2021
PACS:  75.50.Gg (Ferrimagnetics)  
  75.30.Gw (Magnetic anisotropy)  
  85.70.Ge (Ferrite and garnet devices)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0206200 and 2016YFA0302300), the Basic Science Center Project of the National Natural Science Foundation of China (Grant No. 51788104), the National Natural Science Foundation of China (Grant Nos. 11774194, 11804182, 51831005, and 11811082), Beijing Natural Science Foundation (Grant No. Z190009), and the Beijing Advanced Innovation Center for Future Chip (ICFC).
Corresponding Authors:  Wanjun Jiang     E-mail:  jiang_lab@tsinghua.edu.cn

Cite this article: 

Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军) Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy 2021 Chin. Phys. B 30 097503

[1] Geller S, Remeika J P, Sherwood R C, Williams H J and Espinosa G P 1965 Phys. Rev. 137 A1034
[2] Hansen P, Witter K and Tolksdorf W 1983 Phys. Rev. B 27 4375
[3] Avci C O, Rosenberg E, Caretta L, Büttner F, Mann M, Marcus C, Bono D, Ross C A and Beach G S D 2019 Nat. Nanotechnol. 14 561
[4] Yang Y, Liu T, Bi L and Deng L 2021 J. Alloys Compd. 860 158235
[5] O'Dell T H 1986 Rep. Prog. Phys. 49 589
[6] Moon K W, Kim D H, Yoo S C, Je S G, Chun B S, Kim W, Min B C, Hwang C and Choe S B 2015 Sci. Rep. 5 9166
[7] Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A and Beach G S D 2017 Nat. Mater. 16 309
[8] Ahmed A S, Lee A J, Bagués N, McCullian B A, Thabt A M A, Perrine A, Wu P K, Rowland J R, Randeria M, Hammel P C, McComb D W and Yang F 2019 Nano Lett. 19 5683
[9] Shao Q, Liu Y, Yu G, Kim S K, Che X, Tang C, He Q L, Tserkovnyak Y, Shi J and Wang K L 2019 Nat. Electron. 2 182
[10] Hansen U H, Demidova V E and Demokritov S O 2009 Appl. Phys. Lett. 94 252502
[11] Collet M, Milly X D, Kelly O D A, Naletov V V, Bernard R, Bortolotti P, Youssef J B, Demidov V E, Demokritov S O, Prieto J L, Munoz M, Cros V, Anane A, Loubens G D and Klein O 2016 Nat. Commun. 7 10377
[12] Zhang D, Song W and Chai G 2017 J. Phys. D: Appl. Phys. 50 205003
[13] Yoshimoto T, Goto T, Shimada K, Iwamoto B, Nakamura Y, Uchida H, Ross C A and Inoue M 2018 Adv. Electron. Mater. 4 1800106
[14] Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A and Ralph D C 2003 Nature 425 380
[15] Evelt M, Safranski C, Aldosary M, Demidov V E, Barsukov I, Nosov A P, Rinkevich A B, Sobotkiewich K, Li X, Shi J, Krivorotov I N and Demokritov S O 2018 Sci. Rep. 8 1269
[16] Ghosh S, Keyvavinia S, Roy W V, Mizumoto T, Roelkens G and Baets R 2012 Opt. Express 20 1839
[17] Wang X, Chotorlishvili L, Guo G H and Berakdar J 2018 J. Appl. Phys. 124 073903
[18] Srinivasan K and Stadler B J H 2018 Opt. Mater. Express 8 3307
[19] Dulal P, Block A D, Gage T E, Haldren H A, Sung S Y, Hutchings D C and Stadler B J H 2016 ACS Photonics 3 1818
[20] Mizumoto T, Baets R and Bowers J E 2018 MRS Bulletin 43 419
[21] Deb M, Popova E and Keller N 2019 Phys. Rev. B 100 224410
[22] Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S and Saitoh E 2010 Nat. Mater. 9 894
[23] Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song Y Y, Sun Y and Wu M 2011 Phys. Rev. Lett. 107 066604
[24] Uchida K, Nonaka T, Kikkawa T, Kajiwara Y and Saitoh E 2013 Phys. Rev. B 87 104412
[25] Wang H L, Du C H, Pu Y, Adur R, Hammel P C and Yang F Y 2014 Phys. Rev. Lett. 112 197201
[26] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453
[27] Cornelissen L J, Liu J, Duine R A, Youssef J B and van Wees B J 2015 Nat. Phys. 11 1022
[28] Qin H, Both G J, Hämäläinen J, Yao L and van Dijken S 2018 Nat. Commun. 9 5445
[29] Chen J, Wang C, Liu C, Tu S, Bi L and Yu H 2019 Appl. Phys. Lett. 114 212401
[30] Vilela G L S, Abrao J E, Santos E, Yao Y, Mendes J B S, Rodríguez-Suárez R L, Rezende S M, Han W, Azevedo A and Moodera J S 2020 Appl. Phys. Lett. 117 122412
[31] Quindeau A, Avci C O, Liu W, Sun C, Mann M, Tang A S, Onbasli M C, Bono D, Voyles P M, Xu Y, Robinson J, Beach G S D and Ross C A 2017 Adv. Electron. Mater. 3 1600376
[32] Rosenberg E R, Beran L, Avci C O, Zeledon C, Song B, Gonzalez-Fuentes C, Mendil J, Gambardella P, Veis M, Garcia C, Beach G S D and Ross C A 2018 Phys. Rev. Mater. 2 94405
[33] Ding S, Ross A, Lebrun R, Becker S, Lee K, Boventer I, Das S, Kurokawa Y, Gupta S, Yang J, Jakob G and Kläui M 2019 Phys. Rev. B 100 100406
[34] Ryu J, Lee S, Lee K J and Park B G 2020 Adv. Mater. 32 1907148
[35] Li G, Bai H, Su J, Zhu Z Z, Zhang Y and Cai J W 2019 APL Mater. 7 041104
[36] Shao Q, Grutter A, Liu Y, Yu G, Yang C Y, Gilbert D A, Arenholz E, Shafer P, Che X, Tang C, Aldosary M, Navabi A, He Q L, Kirby B J, Shi J and Wang K L 2019 Phys. Rev. B 99 104401
[37] Ding J, Liu C, Zhang Y, Erugu U, Quan Z, Yu R, McCollum E, Mo S, Yang S, Ding H, Xu X, Tang J, Yang X and Wu M 2020 Phys. Rev. Appl. 14 014017
[38] Avci C O, Rosenberg E, Baumgartner M, Beran L, Quindeau A, Gambardella P, Ross C A and Beach G S D 2017 Appl. Phys. Lett. 111 072406
[39] Vélez S, Schaab J, Wörnle M S, Müller M, Gradauskaite E, Welter P, Gutgsell C, Nistor C, Degen C L, Trassin M, Fiebig M and Gambardella P 2019 Nat. Commun. 10 4750
[40] Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J and Beach G S D 2020 Science 370 1438
[41] Kuila M, Hussain Z and Reddy V R 2019 J. Magn. Magn. Mater. 473 458
[42] Bayaraa T, Xu C, Campbell D and Bellaiche L 2019 Phys. Rev. B 100 214412
[43] Ortiz V H, Aldosary M, Li J, Xu Y, Lohmann M I, Sellappan P, Kodera Y, Garay J E and Shi J 2018 APL Mater. 6 121113
[44] Kalashnikova A M, Pavlov V V, Kimel A V, Kirilyuk A, Rasing T and Pisarev R V 2012 Low Temp. Phys. 38 863
[45] Ghanathe M, Kumar A, da Silva I and Yusuf S M 2021 J. Magn. Magn. Mater. 523 167632
[46] Srinivasan K, Radu C, Bilardello D, Solheid P and Stadler B J H 2020 Adv. Funct. Mater. 30 2000409
[47] Chen H, Cheng D, Yang H, Wang D, Zhou S, Shi Z and Qiu X 2020 Appl. Phys. Lett. 116 112401
[48] Zhang Y, Du Q, Wang C, Yan W, Deng L, Hu J, Ross C A and Bi L 2019 APL Mater. 7 081119
[49] Bauer J J, Rosenberg E R, Kundu S, Mkhoyan K A, Quarterman P, Grutter A J, Kirby B J, Borchers J A and Ross C A 2019 Adv. Electron. Mater. 6 1900820
[50] Pamyatnykh L A, Agafonov L Y, Belskii I E and Balymov K G 2017 IEEE Trans. Magn. 53 1
[51] Liu Y K, Wong H F, Lam K K, Chan K H, Mak C L and Leung C W 2018 J. Magn. Magn. Mater. 468 235
[52] Boutaba A, Lahoubi M, Varazashvili V and Pu S 2019 J. Magn. Magn. Mater. 476 551
[53] Strohm C, Linden P V D, Mathon O and Pascarelli S 2019 Phys. Rev. Lett. 122 127204
[54] Kudasov Y B and Kozabaranov R V 2019 Journal of Physics: Conference Series 1389 012109
[55] Liensberger L, Kamra A, Maier-Flaig H, Geprags S, Erb A, Goennenwein S T B, Gross R, Belzig W, Huebl H and Weiler M 2019 Phys. Rev. Lett. 123 117204
[56] Uemura M, Yamagishi T, Ebisu S, Chikazawa S and Nagata S 2008 Philos Mag (Abingdon) 88 209
[57] Dong B W, Cramer J, Ganzhorn K, Yuan H Y, Guo E J, Goennenwein S T B and Kläui M 2018 J. Phys. Condens. Matter 30 035802
[58] Zanjani S and Onbaşli M C 2020 J. Magn. Magn. Mater. 499 166108
[59] Finley J and Liu L 2020 Appl. Phys. Lett. 116 110501
[60] Zhou H A, Xu T, Bai H and Jiang W 2021 J. Phys. Soc. Jpn. 90 081006
[61] Man H, Shi Z, Xu G, Xu Y, Chen X, Sullivan S, Zhou J, Xia K, Shi J and Dai P 2017 Phys. Rev. B 96 100406
[62] Wang L W, Xie L S, Xu P X and Xia K 2020 Phys. Rev. B 101 165137
[63] Bozhko D A, Vasyuchka V I, Chumak A V and Serga A A 2020 Low Temp. Phys. 46 383
[64] Soumah L, Beaulieu N, Qassym L, Carrétéro C, Jacquet E, Lebourgeois R, Youssef J B, Bortolotti P, Cros V and Anane A 2018 Nat. Commun. 9 3355
[65] Mendil J, Trassin M, Bu Q, Schaab J, Baumgartner M, Murer C, Dao P T, Vijayakumar J, Bracher D, Bouillet C, Vaz C A F, Fiebig M and Gambardella P 2019 Phys. Rev. Mater. 3 034403
[66] Chrisey D B and Hublerm G K 1994 Pulsed Laser Deposition of Thin Films (Wiley-Interscience)
[67] Kuppusami P and Raghunathan V S 2006 Surf. Eng. 22 81
[68] Wu C N, Tseng C C, Lin K Y, Cheng C K, Yeh S L, Fanchiang Y T, Hong M and Kwo J 2018 AIP Adv. 8 055904
[69] Chen C C, Chen K H M, Fanchiang Y T, Tseng C C, Yang S R, Wu C N, Guo M X, Cheng C K, Huang S W, Lin K Y, Wu C T, Hong M and Kwo J 2019 Appl. Phys. Lett. 114 031601
[70] Tang C, Sellappan P, Liu Y, Xu Y, Garay J E and Shi J 2016 Phys. Rev. B 94 140403
[71] Wu C N, Tseng C C, Fanchiang Y T, Cheng C K, Lin K Y, Yeh S L, Yang S R, Wu C T, Liu T, Wu M, Hong M and Kwo J 2018 Sci. Rep. 8 11087
[72] Vilela G, Chi H, Stephen G, Settens C, Zhou P, Ou Y, Suri D, Heiman D and Moodera J S 2020 J. Appl. Phys. 127 115302
[73] Chen Y T, Takahashi S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E and Bauer G E W 2013 Phys. Rev. B 87 144411
[74] Liu Q B, Meng K K, Xu Z D, Zhu T, Xu X G, Miao J and Jiang Y 2020 Phys. Rev. B 101 174431
[75] Vasili H B, Casals B, Cichelero R, Maciá F, Geshev J, Gargiani P, Valvidares M, Herrero-Martin J, Pellegrin E, Fontcuberta J and Herranz G 2017 Phys. Rev. B 96 014433
[76] Siddiqui S A, Han J, Finley J T, Ross C A and Liu L 2018 Phys. Rev. Lett. 121 057701
[77] Zhou H, Fan X, Ma L, Zhang Q, Cui L, Zhou S, Gui Y S, Hu C M and Xue D 2016 Phys. Rev. B 94 134421
[78] Dubs C, Surzhenko O, Thomas R, Osten J, Schneider T, Lenz K, Grenzer J, Hübner R and Wendler E 2020 Phys. Rev. Mater. 4 024416
[79] Kehlberger A, Richter K, Onbasli M C, Jakob G, Kim D H, Goto T, Ross C A, Götz G, Reiss G, Kuschel T and Kläui M 2015 Phys. Rev. Appl. 4 014008
[80] Crossley S, Quindeau A, Swartz A G, Rosenberg E R, Beran L, Avci C O, Hikita Y, Ross C A and Hwang H Y 2019 Appl. Phys. Lett. 115 172402
[1] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
[2] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[3] Magnetic anisotropy manipulation and interfacial coupling in Sm3Fe5O12 films and CoFe/Sm3Fe5O12 heterostructures
Lei Shen(沈磊), Guanjie Wu(武冠杰), Tao Sun(孙韬), Zhi Meng(孟智), Chun Zhou(周春), Wenyi Liu(刘文怡), Kang Qiu(邱康), Zongwei Ma(马宗伟), Haoliang Huang(黄浩亮), Yalin Lu(陆亚林), Zongzhi Zhang(张宗芝), and Zhigao Sheng(盛志高). Chin. Phys. B, 2021, 30(12): 127502.
[4] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[5] Crystal growth, spectral properties and Judd-Ofelt analysis of Pr: CaF2-YF3
Jie Tian(田杰), Xiao Cao(曹笑), Wudi Wang(王无敌), Jian Liu(刘坚), Jianshu Dong(董建树), Donghua Hu(胡冬华), Qingguo Wang(王庆国), Yanyan Xue(薛艳艳), Xiaodong Xu(徐晓东), and Jun Xu(徐军). Chin. Phys. B, 2021, 30(10): 108101.
[6] Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals
Hao Zhang(张浩), Hui-Li Tang(唐慧丽), Nuo-Tian He(何诺天), Zhi-Chao Zhu(朱智超), Jia-Wen Chen(陈佳文), Bo Liu(刘波), Jun Xu(徐军). Chin. Phys. B, 2020, 29(8): 087201.
[7] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[8] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[9] A low-dimensional crystal growth model on an isotropic and quasi-free sustained substrate
Chenxi Lu(卢晨曦), Senjiang Yu(余森江), Lingwei Li(李领伟), Bo Yang(杨波), Xiangming Tao(陶向明), Gaoxiang Ye(叶高翔). Chin. Phys. B, 2020, 29(3): 038101.
[10] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[11] A numerical study on pattern selection in crystal growth by using anisotropic lattice Boltzmann-phase field method
Zhaodong Zhang(张兆栋), Yuting Cao(曹宇婷), Dongke Sun(孙东科), Hui Xing(邢辉), Jincheng Wang(王锦程), Zhonghua Ni(倪中华). Chin. Phys. B, 2020, 29(2): 028103.
[12] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
[13] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[14] Transport properties of topological nodal-line semimetal candidate CaAs3 under hydrostatic pressure
Jing Li(李婧), Ling-Xiao Zhao(赵凌霄), Yi-Yan Wang(王义炎), Xin-Min Wang(王欣敏), Chao-Yang Ma(麻朝阳), Wen-Liang Zhu(朱文亮), Mo-Ran Gao(高默然), Shuai Zhang(张帅), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富). Chin. Phys. B, 2019, 28(4): 046202.
[15] Multiple enlarged growth of single crystal diamond by MPCVD with PCD-rimless top surface
Ze-Yang Ren(任泽阳), Jun Liu(刘俊), Kai Su(苏凯), Jin-Feng Zhang(张金风), Jin-Cheng Zhang(张进成), Sheng-Rui Xu(许晟瑞), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(12): 128103.
[1] ZHAO RU-GUANG, HU CHUAN, ZHANG YUN, JIA JIN-FENG, YANG WEI-SHENG. QUASI-KINEMATIC LOW-ENERGY ELECTRON DIFFRACTION AND ITS LATEST APPLICATIONS[J]. Acta Phys. Sin. (Overseas Edition), 1995, 4(3): 219 -224 .
[2] ZAFAR AHSAN. SYMMETRIES OF THE ELECTROMAGNETIC FIELDS IN GENERAL RELATIVITY[J]. Acta Phys. Sin. (Overseas Edition), 1995, 4(5): 337 -343 .
[3] SHENG WEI-DONG, XIA JIAN-BAI. SUPPRESSION OF BALLISTIC ELECTRON TRANSMISSION THROUGH A SEMICONDUCTOR Π-STRUCTURE BY AN EXTERNAL TRANSVERSE ELECTRIC FIELD[J]. Acta Phys. Sin. (Overseas Edition), 1996, 5(9): 700 -704 .
[4] Guo Wei-Bin, Wang Neng-Chao, Shi Bao-Chang, Guo Zhao-Li. Lattice-BGK simulation of a two-dimensional channel flow around a square cylinder[J]. Chin. Phys., 2003, 12(1): 67 -74 .
[5] Liu Wei-Dong, K. F. Ren, S. Meunier-Guttin-Cluzel, G. Gouesbet. Global vector-field reconstruction of nonlinear dynamical systems from a time series with SVD method and validation with Lyapunov exponents[J]. Chin. Phys., 2003, 12(12): 1366 -1373 .
[6] Shi Bing-Ren. Analytic description of tokamak equilibrium sustained by high fraction bootstrap current[J]. Chin. Phys., 2003, 12(6): 626 -631 .
[7] Cai Jian-Le, Luo Shao-Kai, Jia Li-Qun. A set of Lie symmetrical non-Noether conserved quantity for the relativistic Hamiltonian systems[J]. Chin. Phys., 2003, 12(8): 841 -845 .
[8] Feng Guo-Lin, Dong Wen-Jie, Jia Xiao-Jing. Application of retrospective time integration scheme to the prediction of torrential rain[J]. Chin. Phys., 2004, 13(3): 413 -422 .
[9] Tao Yong-Mei, Jiang Qing. Study of BaxSr1-xTiO3 thin films using transverse-field Ising model[J]. Chin. Phys., 2004, 13(7): 1149 -1155 .
[10] Chen Liang, Zhang Geng-Min, Wang Ming-Sheng, Zhang Qi-Feng. Field emission from zinc oxide nanowires[J]. Chin. Phys., 2005, 14(1): 181 -185 .