Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077302    DOI: 10.1088/1674-1056/ac078c
RAPID COMMUNICATION Prev   Next  

Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface

Wen-Xiao Shi(时文潇)1,2, Hui Zhang(张慧)1,2, Shao-Jin Qi(齐少锦)1,2, Jin-E Zhang(张金娥)1,2, Hai-Lin Huang(黄海林)1,2, Bao-Gen Shen(沈保根)1, Yuan-Sha Chen(陈沅沙)1,3,†, and Ji-Rong Sun(孙继荣)1,4,5,‡
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Fujian Innovation Academy, Chinese Academy of Sciences, Fuzhou 350108, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China;
5 Spintronics Institute, University of Jinan, Jinan 250022, China
Abstract  Two-dimensional electron gases (2DEGs) formed at the interface between two oxide insulators present a promising platform for the exploration of emergent phenomena. While most of the previous works focused on SrTiO$_{3}$-based 2DEGs, here we took the amorphous-ABO$_{3}$/KTaO$_{3}$ system as the research object to study the relationship between the interface conductivity and the redox property of B-site metal in the amorphous film. The criterion of oxide-oxide interface redox reactions for the B-site metals, Zr, Al, Ti, Ta, and Nb in conductive interfaces was revealed: the formation heat of metal oxide, ${\Delta H}_{\rm f}^{\rm o}$, is lower than $-350 $ kJ/(mol O) and the work function of the metal $\varPhi $ is in the range of 3.75 eV$ <\varPhi <4.4$ eV. Furthermore, we found that the smaller absolute value of ${\Delta H}_{\rm f}^{\rm o}$ and the larger value of $\varPhi $ of the B-site metal would result in higher mobility of the two-dimensional electron gas that formed at the corresponding amorphous-ABO$_{3}$/KTaO$_{3}$ interface. This finding paves the way for the design of high-mobility all-oxide electronic devices.
Keywords:  two-dimensional electron gas      oxygen vacancies      thermodynamic criterion      Hall mobility  
Received:  01 February 2021      Revised:  22 March 2021      Accepted manuscript online:  03 June 2021
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  68.35.Md (Surface thermodynamics, surface energies)  
  73.40.-c (Electronic transport in interface structures)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2016YFA0300701, 2017YFA0206304, and 2018YFA0305704), the National Natural Science Foundation of China (Grant Nos. 11934016, 111921004, 51972335, and 11674378), and the Key Program of the Chinese Academy of Sciences (Grant Nos. XDB33030200 and QYZDY-SSW-SLH020).
Corresponding Authors:  Yuan-Sha Chen, Ji-Rong Sun     E-mail:  yschen@iphy.ac.cn;jrsun@iphy.ac.cn

Cite this article: 

Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣) Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface 2021 Chin. Phys. B 30 077302

[1] Ohtomo A and Hwang H Y 2004 Nature 427 423
[2] Hotta Y, Susaki T and Hwang H Y 2007 Phys. Rev. Lett. 99 236805
[3] Kim J S, Seo S Sea A, Chisholm M F, Kremer R K, Habermeier H U, Keimer B and Lee H N 2010 Phys. Rev. B. 82 201407
[4] Biscaras J, Bergeal N, Kushwaha A, Wolf T, Rastogi A, Budhani R C and Lesueur J 2010 Nat. Commun. 1 89
[5] Chen Y Z, Pryds N, Kleibeuker J E, Sun J R, Stamate E, Koster G, Shen B G, Rijnders G and Linderoth S 2011 Nano. Lett. 11 3774
[6] Li C, Xu Q F, Wen Z F, Zhang S T, Li A D and Wu D 2013 Appl. Phys. Lett. 103 201602
[7] Gunkel F, Skaja K, Shkabko A, Dittmann R, Hoffmann-Eifert S and Waser R 2013 Appl. Phys. Lett. 102 071601
[8] Chen Y Z, Bovet N, Trier F, Christensen D V, Qu F M, Andersen N H, Kasama T, Zhang W, Giraud R, Dufouleur J, Jespersen T S, Sun J R, Smith A, Nygard J, Lu L, Büchner B, Shen B G, Linderothand S and Pryds N 2013 Nat. Commun. 4 1371
[9] Huang Z, Han K, Zeng S W, Motapothula M, Borisevich A Y, Ghosh S, Lü W M, Li C J, Zhou W X, Liu Z Q, Coey M, Venkatesan T and Ariando 2015 Nano Lett. 16 2307
[10] Chen Y Z, Trier F, Kasama T, Christensen D V, Bovet N, Balogh Z I, Li H, Thydén K T S, Zhang W, Yazdi S, Norby P, Pryds N and Linderoth S 2015 Nano Lett. 15 1849
[11] Wang F N, Li J C, Zhang X M, Liu H Z, Liu J, Wang C L, Zhao M L, Su W B and Mei L M 2017 Chin. Phys. B. 26 037101
[12] Qi S J, Sun X, Yan X, Zhang H, Zhang H R, Zhang J E, Huang H L, Han F R, Song J H, Shen B G and Chen Y S 2021 Chin. Phys. B. 30 017301
[13] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196
[14] Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J and Triscone J M 2008 Nature 456 624
[15] Brinkman A, Huijben M, van Zalk M, Huijben J, Zeitler U, Maan J C, van der Wiel W G, Rijnders G, Blank and Hilgenkamp H 2007 Nat. Mater. 6 493
[16] Kalisky B, Bert J A, Klopfer B B, Bell C, Sato H K, Hosoda M, Hikita Y, Hwang H Y and Moler K A 2012 Nat. Commun. 3 922
[17] Lee J S, Xie Y W, Sato H K, Bell C, Hikita Y, Hwang H Y and Kao C C 2013 Nat. Mater. 12 703
[18] Trier F, Prawiroatmodjo G, Zhong Z, Christensen D, Soosten M, Bhowmik A, Lastra J, Chen Y, Jespersen T and Pryds N 2016 Phys. Rev. Lett. 117 096804
[19] Lesne E, Fu Y, Oyarzun S, Rojas-Sánchez J C, Vaz D C, Naganuma H, Sicoli G, Attané J P, Jamet M, Jacquet E, George J M, Barthélémy A, Jarés H, Fert A, Bibes M and Vila L 2016 Nat. Mater. 15 1261
[20] Song Q, Zhang H R, Su T, Yuan W, Chen Y Y, Xing W Y, Shi J, Sun J R and Han W 2017 Sci. Adv. 3 e1602312
[21] Zou K, Ismail-Beigi S, Kisslinger K, Shen X, Su D, Walker F J and Ahn C H 2015 APL Mater. 3 036104
[22] Harashima S, Bell C, Kim M, Yajima T, Hikita Y and Hwang H Y 2013 Phys. Rev. B. 88 085102
[23] Höchli U T, Weibel H E and Boatner L A 1977 Phys. Rev. Lett. 39 1158
[24] King P D C, He R H, Eknapakul T, Buaphet P, Mo S K, Kaneko Y, Harashima S, Hikita Y, Bahramy M S, Bell C, Hussain Z, Tokura Y, Shen Z X, Hwang H Y, Baumberger F and Meevasana W 2012 Phys. Rev. Lett. 108 117602
[25] Zhang H, Zhang H R, Yan X, Zhang X J, Zhang Q H, Zhang J, Han F R, Gu L, Liu B G, Chen Y S, Shen B G and Sun J R 2017 ACS Appl. Mater. Interfaces 9 36456
[26] Zhang H, Yan X, Zhang X J, Wang S, Xiong C M, Zhang H R, Qi S J, Zhang J E, Han F R, Wu N, Liu B G, Chen Y S, Shen B G and Sun J R 2019 ACS Nano 13 609
[27] Zhang H R, Yun Y, Zhang X J, Zhang H, Ma Y, Yan X, Wang F, Li G, Li R, Khan T, Chen Y S, Liu W, Hu F X, Liu B G, Shen B G, Han W and Sun J R 2018 Phys. Rev. Lett. 121 116803
[28] Joshua A, Pecker S, Ruhman J, Altman E and Ilani S 2012 Nat. Commun. 3 1129
[29] Nakagawa N, Hwang H Y and Muller D A 2012 Nat. Mater. 5 204
[30] Basletic M, Maurice J L, Carrétéro C, Herranz G, Copie O, Bibes M, Jacquet É, Bouzehouane K, Fusil S and Barthélémy A 2008 Nat. Mater. 7 621
[31] Willmott P R, Pauli S A, Herger R, Schlepütz C M, Martoccia D, Patterson B D, Delley B, Clarke R, Kumah D, Cionca C and Yacoby Y 2007 Phys. Rev. Lett. 99 155502
[32] Herranz G, Basletic M, Bibes M, Carrétéro C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzic A, Broto J M, Barthélémy A and Fert A 2007 Phys. Rev. Lett. 98 216803
[33] Fu Q and Wagner T 2007 Surf. Sci. Rep. 62 431
[34] Lide D R 2010 CRC Handbook of Chemistry and Physics [M], 92nd (Boca Raton: CRC Press) pp. 5-5, 5-10, 5-12, 5-15, 5-16, 5-17, 12-114
[1] Low temperature ferromagnetism in CaCu3Ti4O12
Song Yang(杨松), Xiao-Jing Luo(罗晓婧), Zhi-Ming Shen(申志明), Tian Gao(高湉), Yong-Sheng Liu(刘永生), and Shao-Long Tang(唐少龙). Chin. Phys. B, 2021, 30(9): 098103.
[2] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[3] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[4] Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases
Feng Chi(迟锋), Zhen-Guo Fu(付振国), Liming Liu(刘黎明), Ping Zhang(张平). Chin. Phys. B, 2019, 28(10): 107305.
[5] Temperature dependence on the electrical and physical performance of InAs/AlSb heterojunction and high electron mobility transistors
Jing Zhang(张静), Hongliang Lv(吕红亮), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Yuming Zhang(张玉明). Chin. Phys. B, 2018, 27(9): 097201.
[6] Two-dimensional electron gas characteristics of InP-based high electron mobility transistor terahertz detector
Jin-Lun Li(李金伦), Shao-Hui Cui(崔少辉), Jian-Xing Xu(徐建星), Xiao-Ran Cui(崔晓然), Chun-Yan Guo(郭春妍), Ben Ma(马奔), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(4): 047101.
[7] Bias polarity-dependent unipolar switching behavior in NiO/SrTiO3 stacked layer
Xian-Wen Sun(孙献文), Cai-Hong Jia(贾彩虹), Xian-Sheng Liu(刘献省), Guo-Qiang Li(李国强), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2018, 27(4): 047304.
[8] Review of photoresponsive properties at SrTiO3-based heterointerfaces
Hong Yan(闫虹), Zhaoting Zhang(张兆亭), Shuanhu Wang(王拴虎), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(11): 117804.
[9] Electrical analysis of inter-growth structured Bi4Ti3O12–Na0.5Bi4.5Ti4O15 ceramics
Xiangping Jiang(江向平), Yalin Jiang(江亚林), Xingan Jiang(江兴安), Chao Chen(陈超), Na Tu(涂娜), Yunjing Chen(陈云婧). Chin. Phys. B, 2017, 26(7): 077701.
[10] Electrical property effect of oxygen vacancies in the heterojunction of LaGaO3/SrTiO3
Fu-Ning Wang(王芙凝), Ji-Chao Li(李吉超), Xin-Miao Zhang(张鑫淼), Han-Zhang Liu(刘汉璋), Jian Liu(刘剑), Chun-Lei Wang(王春雷), Ming-Lei Zhao(赵明磊), Wen-Bin Su(苏文斌), Liang-Mo Mei(梅良模). Chin. Phys. B, 2017, 26(3): 037101.
[11] Growth condition optimization and mobility enhancement through inserting AlAs monolayer in the InP-based InxGa1-xAs/In0.52Al0.48As HEMT structures
Shu-Xing Zhou(周书星), Ming Qi(齐鸣), Li-Kun Ai(艾立鹍), An-Huai Xu(徐安怀). Chin. Phys. B, 2016, 25(9): 096801.
[12] In-plane anisotropy in two-dimensional electron gas at LaAlO3/SrTiO3(110) interface
Sheng-Chun Shen(沈胜春), Yan-Peng Hong(洪彦鹏), Cheng-Jian Li(厉承剑), Hong-Xia Xue(薛红霞), Xin-Xin Wang(王欣欣), Jia-Cai Nie(聂家财). Chin. Phys. B, 2016, 25(7): 076802.
[13] Identification of surface oxygen vacancy-related phonon-plasmon coupling in TiO2 single crystal
Jun-Hong Guo(郭俊宏), Ting-Hui Li(李廷会), Fang-Ren Hu(胡芳仁), Li-Zhe Liu(刘力哲). Chin. Phys. B, 2016, 25(12): 127103.
[14] Exchange effect and magneto-plasmon mode dispersion in an anisotropic two-dimensional electronic system
Xiaoguang Wu(吴晓光). Chin. Phys. B, 2016, 25(11): 117801.
[15] Growth condition optimization and mobility enhancement throughprolonging the GaN nuclei coalescence process of AlGaN/AlN/GaN structure
He Xiao-Guang, Zhao De-Gang, Jiang De-Sheng, Zhu Jian-Jun, Chen Ping, Liu Zong-Shun, Le Ling-Cong, Yang Jing, Li Xiao-Jing, Zhang Shu-Ming, Yang Hui. Chin. Phys. B, 2015, 24(9): 096802.
No Suggested Reading articles found!