Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 018501    DOI: 10.1088/1674-1056/ac051d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET

Hong Zhang(张鸿)1, Hong-Xia Guo(郭红霞)1,2,†, Feng-Qi Zhang(张凤祁)2, Xiao-Yu Pan(潘霄宇)2, Yi-Tian Liu(柳奕天)1, Zhao-Qiao Gu(顾朝桥)1, An-An Ju(琚安安)1, and Xiao-Ping Ouyang(欧阳晓平)2
1 School of Material Science and Engineering, Xiangtan University, Xiangtan 411105, China;
2 Northwest Institute of Nuclear Technology, Xi'an 710024, China
Abstract  The energy deposition and electrothermal behavior of SiC metal-oxide-semiconductor field-effect transistor (MOSFET) under heavy ion radiation are investigated based on Monte Carlo method and TCAD numerical simulation. The Monte Carlo simulation results show that the density of heavy ion-induced energy deposition is the largest in the center of the heavy ion track. The time for energy deposition in SiC is on the order of picoseconds. The TCAD is used to simulate the single event burnout (SEB) sensitivity of SiC MOSFET at four representative incident positions and four incident depths. When heavy ions strike vertically from SiC MOSFET source electrode, the SiC MOSFET has the shortest SEB time and the lowest SEB voltage with respect to direct strike from the epitaxial layer, strike from the channel, and strike from the body diode region. High current and strong electric field simultaneously appear in the local area of SiC MOSFET, resulting in excessive power dissipation, further leading to excessive high lattice temperature. The gate-source junction area and the substrate-epitaxial layer junction area are both the regions where the SiC lattice temperature first reaches the SEB critical temperature. In the SEB simulation of SiC MOSFET at different incident depths, when the incident depth does not exceed the device's epitaxial layer, the heavy-ion-induced charge deposition is not enough to make lattice temperature reach the SEB critical temperature.
Keywords:  SiC MOSFET      Monte Carlo method      TCAD      single event burnout      lattice temperature  
Received:  30 March 2021      Revised:  13 May 2021      Accepted manuscript online:  26 May 2021
PACS:  85.30.Tv (Field effect devices)  
  61.80.Jh (Ion radiation effects)  
  51.50.+v (Electrical properties)  
  84.30.Jc (Power electronics; power supply circuits)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875229 and 12075065).
Corresponding Authors:  Hong-Xia Guo     E-mail:  guohxnint@126.com

Cite this article: 

Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平) Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET 2022 Chin. Phys. B 31 018501

[1] Dimitrijev S and Philippe J 2003 Microelectron. Reliab. 43 225
[2] Hudgins J L, Simin G S, Santi S and Khan M A 2003 IEEE Trans. Nucl. Sci. 18 907
[3] Östling M, Mikael, Ghandi R and Zetterling C M 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs, May 23–26, 2011, San Diego, CA, USA, p. 1015
[4] Wang Y H, Zhang Y M, Zhang Y M, Zhang L, Jia R X and Chen D 2010 Chin. Phys. B 19 036803
[5] Mizuta E, Kuboyama S, Abe H, Iwata Y and Tamura T 2014 IEEE Trans. Nucl. Sci. 61 1924
[6] Lauenstein J M, Casey M C, Topper A D, Wilcox E P, Phan A M and LaBel K A 2015 IEEE Nuclear & Space Radiation Effects Conference, July 13–17, 2015, Boston, USA, p. 12
[7] Akturk A, Wilkins R, McGarrity J and Gersey B 2017 IEEE Trans. Nucl. Sci. 64 529
[8] Kuboyama S, Kamezawa C, Satoh Y, Hirao T and Ohyama H 2007 IEEE Trans. Nucl. Sci. 54 2379
[9] Lauenstein J M, Casey M C, LaBel K A, Topper A D, Wilcox E P, Kim H and Phan A M 2014 the NASA Electronic Parts and Packaging Electronics Technology Workshop, June 17–19, 2014, Greenbelt, MD, p. 118
[10] Javanainen A, Galloway K F, Nicklaw C, Bosser A L, Ferlet-Cavrois V, Lauenstein J M, Pintacuda F, Reed R A, Schrimpf R D, Weller R A and Virtanen A 2017 IEEE Trans. Nucl. Sci. 64 415
[11] Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J M, Sternberg A L and Schrimpf R D 2018 IEEE Trans. Nucl. Sci. 65 1951
[12] McPherson J A, Kowal P J, Pandey G K, Chow T P, Ji W and Woodworth A A 2018 IEEE Trans. Nucl. Sci. 66 474
[13] Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Javanainen A and Lauenstein J M 2019 IEEE Trans. Nucl. Sci. 67 22
[14] Agostinelliae S, Allisonas J, Amakoe K, et al. 2003 Nucl. Instrum. Method A 506 250
[15] Dufour C, Khomenkov V, Rizza G and Toulemonde M 2012 J. Phys. D: Appl. Phys. 45 065302
[16] Allison J, Amako K, Apostolakis J E A, et al. 2006 IEEE Trans. Nucl. Sci. 53 270
[17] Nilsson O, Mehling H, Horn R, Fricke J and Hofmann D 1997 High Temp.-High Press. 29 7379
[18] Touloukian Y S and Ho C Y 1970 Thermophysical Properties of Matter (New York) pp. 448–450
[19] Martinella C, Stark R, Ziemann T, Alía R G, Kadi Y, Grossner U and Javanainen A 2019 IEEE Trans. Nucl. Sci. 66 1702
[20] Ye X, Xia X C, Liang H W, Li Z, Zhang H Q, Du G T, Cui X Z and Liang X H 2018 Chin. Phys. B 27 087304
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[3] Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
Dong-Qing Li(李东青), Tian-Qi Liu(刘天奇), Pei-Xiong Zhao(赵培雄), Zhen-Yu Wu(吴振宇), Tie-Shan Wang(王铁山), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(5): 056106.
[4] Solving quantum rotor model with different Monte Carlo techniques
Weilun Jiang(姜伟伦), Gaopei Pan(潘高培), Yuzhi Liu(刘毓智), and Zi-Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(4): 040504.
[5] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[6] An insulated-gate bipolar transistor model based on the finite-volume charge method
Manhong Zhang(张满红) and Wanchen Wu(武万琛). Chin. Phys. B, 2022, 31(12): 128501.
[7] A 3D SiC MOSFET with poly-silicon/SiC heterojunction diode
Sheng-Long Ran(冉胜龙), Zhi-Yong Huang(黄智勇), Sheng-Dong Hu(胡盛东), Han Yang(杨晗), Jie Jiang(江洁), and Du Zhou(周读). Chin. Phys. B, 2022, 31(1): 018504.
[8] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[9] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
[10] Trigger mechanism of PDSOI NMOS devices for ESD protection operating under elevated temperatures
Jia-Xin Wang(王加鑫), Xiao-Jing Li(李晓静), Fa-Zhan Zhao(赵发展), Chuan-Bin Zeng(曾传滨), Duo-Li Li(李多力), Lin-Chun Gao(高林春), Jiang-Jiang Li(李江江), Bo Li(李博), Zheng-Sheng Han(韩郑生), and Jia-Jun Luo(罗家俊). Chin. Phys. B, 2021, 30(7): 078501.
[11] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[12] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[13] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[14] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[15] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
No Suggested Reading articles found!