Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 018502    DOI: 10.1088/1674-1056/ac05b2
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology

Yan-Fu Wang(王彦富)1,2, Bo Wang(王博)2,3, Rui-Ze Feng(封瑞泽)1,2, Zhi-Hang Tong(童志航)1,2, Tong Liu(刘桐)2, Peng Ding(丁芃)1,2,†, Yong-Bo Su(苏永波)1,2, Jing-Tao Zhou(周静涛)1,2, Feng Yang(杨枫)2, Wu-Chang Ding(丁武昌)1,2, and Zhi Jin(金智)1,2,‡
1 University of Chinese Academic of Sciences, Beijing 100029, China;
2 High-Frequency High-Voltage Device and Integrated Circuits Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
3 Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  Heterogeneous integrated InP high electron mobility transistors (HEMTs) on quartz wafers are fabricated successfully by using a reverse-grown InP epitaxial structure and benzocyclobutene (BCB) bonding technology. The channel of the new device is In0.7Ga0.3As, and the gate length is 100 nm. A maximum extrinsic transconductance gm,max of 855.5 mS/mm and a maximum drain current of 536.5 mA/mm are obtained. The current gain cutoff frequency is as high as 262 GHz and the maximum oscillation frequency reaches 288 GHz. In addition, a small signal equivalent circuit model of heterogeneous integration of InP HEMTs on quartz wafer is built to characterize device performance.
Keywords:  heterogeneous integration      InP high electron mobility transistor      quartz      small-signal model  
Received:  10 February 2021      Revised:  21 May 2021      Accepted manuscript online:  27 May 2021
PACS:  85.30.Tv (Field effect devices)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.-z (Semiconductor devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61434006). The authors would like to thank Li Yan-Kui for his assistance during the measurements. We are also grateful to all the members of HighFrequency High-Voltage Device and Integrated Circuits Center for their valuable help during the experiment.
Corresponding Authors:  Peng Ding, Zhi Jin     E-mail:  dingpeng@ime.ac.cn;jinzhi@ime.ac.cn

Cite this article: 

Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智) Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology 2022 Chin. Phys. B 31 018502

[1] Kim D H and Alamo J A D 2010 IEEE Electron Dev. Lett. 31 806
[2] Zhong Y H, Yang B, Chang M M, Ding P, Ma L H, Li M K, Duan Z Y, Yang J, Jin Z and Wei Z C 2020 Chin. Phys. B 29 038502
[3] Kim D H, Brar B and Alamo J A D 2011 Electron Devices Meeting
[4] Sun S X, Wei Z C, Xia P H, Wang W B, Duan Z Y, Li Y X, Zhong Y H, Ding P and Jin Z 2018 Chin. Phys. B 27 028502
[5] Sun S X, Chang M M, Li M K, Ma L H, Zhong Y H, Li Y X, Ding P, Jin Z and Wei Z C 2019 Chin. Phys. B 28 078501
[6] Li J L, Cui S H, Xu J X, Cui X R, Guo C Y, Ma B, Ni H Q and Niu Z C 2018 Chin. Phys. B 27 047101
[7] Liu W K, Lubyshev D, Fastenau J M, Wu Y, Bulsara M T, Fitzgerald E A, Urteaga M, Ha W, Bergman J, Brar B, Hoke W E, LaRoche J R, Herrick K J, Kazior T E, Clark D, Smith D, Thompson R F, Drazek C and Daval N 2009 J. Cryst. Growth 311 1979
[8] Hayashi S, Goorsky M, Noori A and Bruno D 2006 J. Electrochem. Soc. 153 G1011
[9] Kim S, Ikku Y, Yokoyama M, Nakane R, Li J, Kao Y C, Takenaka M and Takagi S 2014 Appl. Phys. Lett. 105 043504
[10] Zhou S X, Qi M, Ai L K, Xu A H, Wang L D, Ding P and Jin Z 2015 Chin. Phys. Lett. 32 097101
[11] Huang J, Guo T Y, Zhang H Y, Xu J B, Fu X J, Yang H and Niu J B 2010 Chin. Phys. Lett. 27 118502
[12] Wang L D, Ding P, Su Y B, Chen J, Zhang B C and Jin Z 2014 Chin. Phys. B 23 038501
[13] Wang Q, Ding P, Su Y B, Ding W C, Muhammad A, Tang W and Jin Z 2016 J. Semicond. 37 074003
[14] Zhong Y H, Li K K, Li M K, Wang W B, Sun S X, Li H L, Ding P and Jin Z 2018 J. Infrared. Millim. Wave 37 163
[15] Zhong Y H, Wang W B, Yang J, Sun S X, Chang M M, Duan Z Y, Jin Z and Ding P 2020 Solid State Electron. 164 107613
[16] Bollaert S, Wallaert X, Lepilliet S, Cappy A, Jalaguier E, Pocas S and Aspar B 2002 IEEE Electron. Dev. Lett. 23 73
[17] Shi J, Wichmann N, Roelens Y and Bollaert S 2013 2012 International Conference On Indium Phosphide And Related Materials p. 233
[18] Sun B, Chang H, Wang S, Niu J and Liu H 2017 Solid State Electron. 138 40
[19] Tong Z H, Ding P, Su Y B, Wang D H and Jin Z 2021 Chin. Phys. B 30 018501
[20] Sasaki H, Yajima K, Yoshida N, Ishihara O and Mitsui S 1995 7th International Conference on Indium Phosphide and Related Materials, p. 745
[1] Heterogeneous integration of GaSb layer on (100) Si substrate by ion-slicing technique
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), Zheng-Hao Shen(沈正皓), Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Jin Li(李进), Min Liao(廖敏), and Yi-Chun Zhou(周益春). Chin. Phys. B, 2022, 31(7): 076103.
[2] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[3] Effects of square micro-pillar array porosity on the liquid motion of near surface layer
Xiaoxi Qiao(乔小溪), Xiangjun Zhang(张向军), Ping Chen(陈平), Yu Tian(田煜), Yonggang Meng(孟永钢). Chin. Phys. B, 2020, 29(2): 024702.
[4] Hybrid temperature effect on a quartz crystal microbalance resonator in aqueous solutions
Qiang Li(李强), Yu Gu(谷宇), Bin Xie(谢斌). Chin. Phys. B, 2017, 26(6): 067704.
[5] Heterogeneous integration of GaAs pHEMT and Si CMOS on the same chip
Li-Shu Wu(吴立枢), Yan Zhao(赵岩), Hong-Chang Shen(沈宏昌) You-Tao Zhang(张有涛), Tang-Sheng Chen(陈堂胜). Chin. Phys. B, 2016, 25(6): 067306.
[6] New pattern recognition system in the e-nose for Chinese spirit identification
Hui Zeng(曾慧), Qiang Li(李强), Yu Gu(谷宇). Chin. Phys. B, 2016, 25(2): 024201.
[7] First-principles simulation of Raman spectra and structural properties of quartz up to 5 GPa
Liu Lei (刘雷), Lv Chao-Jia (吕超甲), Zhuang Chun-Qiang (庄春强), Yi Li (易丽), Liu Hong (刘红), Du Jian-Guo (杜建国). Chin. Phys. B, 2015, 24(12): 127401.
[8] Influences of neutral oxygen vacancies and E1'centers on α-quartz
Li Hui-Ran (李会然), Cheng Xin-Lu (程新路), Zhang Hong (张红), Zhao Feng (赵峰). Chin. Phys. B, 2015, 24(10): 106105.
[9] 100-nm T-gate InAlAs/InGaAs InP-based HEMTs with fT=249 GHz and fmax=415 GHz
Wang Li-Dan (汪丽丹), Ding Peng (丁芃), Su Yong-Bo (苏永波), Chen Jiao (陈娇), Zhang Bi-Chan (张毕禅), Jin Zhi (金智). Chin. Phys. B, 2014, 23(3): 038501.
[10] Vibration analysis of a new polymer quartz piezoelectric crystal sensor for detecting characteristic materials of volatility liquid
Gu Yu (谷宇), Li Qiang (李强), Xu Bao-Jun (许保军), Zhao Zhe (赵喆). Chin. Phys. B, 2014, 23(1): 017804.
[11] Effects of mode coupling on the admittance of an AT-cut quartz thickness-shear resonator
He Hui-Jing (何慧晶), Yang Jia-Shi (杨嘉实), Zhang Wei-Ping (张卫平), Wang Ji (王骥). Chin. Phys. B, 2013, 22(4): 047702.
[12] Thickness shear mode quartz crystal resonators with optimized elliptical electrodes
Ma Ting-Feng(马廷锋), Zhang Chao(张超), Jiang Xiao-Ning(江小宁), and Feng Guan-Ping(冯冠平) . Chin. Phys. B, 2011, 20(4): 047701.
[13] Chirality-asymmetry force between $\alpha$-quartz and copper block
Hu Yong-Hong(胡永红), Xu Qing(徐庆), and Liu Zhong-Zhu(刘中柱). Chin. Phys. B, 2009, 18(4): 1367-1372.
No Suggested Reading articles found!