Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 126802    DOI: 10.1088/1674-1056/ac003e
RAPID COMMUNICATION Prev   Next  

Extended phase diagram of La1-xCaxMnO3 by interfacial engineering

Kexuan Zhang(张可璇)1, Lili Qu(屈莉莉)1, Feng Jin(金锋)1, Guanyin Gao(高关胤)1, Enda Hua(华恩达)1, Zixun Zhang(张子璕)1, Lingfei Wang(王凌飞)1,†, and Wenbin Wu(吴文彬)1,2,‡
1 Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China;
2 Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, China
Abstract  The interfacial enhanced ferromagnetism in maganite/ruthenate system is regarded as a promising path to broaden the potential of oxide-based electronic device applications. Here, we systematically studied the physical properties of LaLa1-xCaxMnO3/SrRuO3 superlattices and compared them with the LaLa1-xCaxMnO3 thin films and bulk compounds. The LaLa1-xCaxMnO3/SrRuO3 superlattices exhibit significant enhancement of Curie temperature (TC) beyond the corresponding thin films and bulks. Based on these results, we constructed an extended phase diagram of LaLa1-xCaxMnO3 under interfacial engineering. We considered the interfacial charge transfer and structural proximity effects as the origin of the interface-induced high TC. The structural characterizations revealed a pronounced increase of B-O-B bond angle, which could be the main driving force for the high TC in the superlattices. Our work inspires a deeper understanding of the collective effects of interfacial charge transfer and structural proximity on the physical properties of oxide heterostructures.
Keywords:  interfacial engineering      oxygen octahedral coupling      charge transfer      oxide superlattices  
Received:  02 April 2021      Revised:  05 May 2021      Accepted manuscript online:  12 May 2021
PACS:  68.35.Rh (Phase transitions and critical phenomena)  
  68.65.Cd (Superlattices)  
  75.30.Et (Exchange and superexchange interactions)  
  75.25.Dk (Orbital, charge, and other orders, including coupling of these orders)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0401003, 2017YFA0403502, and 2020YFA0309100), the National Natural Science Foundation of China (Grant Nos. 11974326, 12074365, 11804342, U2032218, and 51872278), the Fundamental Research Funds for the Central Universities, China (Grant Nos. WK2030000035 and WK2340000102), and Hefei Science Center of Chinese Academy of Sciences (Grant No. 2020HSC-UE014).
Corresponding Authors:  Lingfei Wang, Wenbin Wu     E-mail:  wanglf@ustc.edu.cn;wuwb@ustc.edu.cn

Cite this article: 

Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬) Extended phase diagram of La1-xCaxMnO3 by interfacial engineering 2021 Chin. Phys. B 30 126802

[1] Chakhalian J, Freeland J W, Millis A J, Panagopoulos C and Rondinelli J M 2014 Rev. Mod. Phys. 86 1189
[2] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103
[3] Rondinelli J M and Spaldin N A 2011 Adv. Mater. 23 3363
[4] Gao, Y.; Wang J, Wu L, Bao S, Shen Y, Lin Y and Nan C 2015 Sci. China Mater. 58 302
[5] Moon E J, Balachandran P V, Kirby B J, Keavney D J, Sichel-Tissot R J, Schleputz C M, Karapetrova E, Cheng X M, Rondinelli J M and May S J 2014 Nano. Lett. 14 2509
[6] Zhong Z and Hansmann P 2017 Phys. Rev. X 7 011023
[7] Grisolia M N, Varignon J, Sanchez-Santolino G, Arora A, Valencia S, Varela M, Abrudan R, Weschke E, Schierle E, Rault J E, Rueff J P, Barthelemy A, Santamaria J and Bibes M 2016 Nat. Phys. 12 484
[8] Chen H and Millis A 2017 J. Phys. Condens. Matter. 29 243001
[9] Hoffman J, Tung I C, Nelson-Cheeseman B B, Liu M, Freeland J W and Bhattacharya A 2013 Phys. Rev. B 88 144411
[10] Shiomi Y, Handa Y, Kikkawa T and Saitoh E 2015 Phys. Rev. B 92 024418
[11] Ziese M, Bern F, Pippel E, Hesse D and Vrejoiu I 2012 Nano Lett. 12 4276
[12] He C, Grutter A J, Gu M, Browning N D, Takamura Y, Kirby B J, Borchers J A, Kim J W, Fitzsimmons M R, Zhai X, Mehta V V, Wong F J and Suzuki Y 2012 Phys. Rev. Lett. 109 197202
[13] Chen B B, Chen P F, Xu H R, Jin F, Guo Z, Lan D, Wan S Y, Gao G Y, Chen F and Wu W B 2016 ACS Appl. Mater. Interfaces 8 34924
[14] Chen B B, Chen P F, Xu H R, Tan X L, Jin F, Guo Z, Zhi B W and Wu W B 2014 Appl. Phys. Lett. 104 242416
[15] Chen P F, Chen B B, Tan X L, Xu H R, Xuan X F, Guo Z, Jin F and Wu W B 2013 Appl. Phys. Lett. 103 262402
[16] Lan D, Chen B B, Qu L L, Jin F, Guo Z, Xu L Q, Zhang K X, Gao G Y, Chen F, Jin S W, Wang L F and Wu W B 2019 ACS Appl. Mater. Interfaces 11 10399
[17] Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1
[18] Yunoki S, Hotta T and Dagotto E 2000 Phys. Rev. Lett. 84 3714
[19] Gennes P G 1960 Phys. Rev. 118 141
[20] Huijben M, Koster G, Liao Z L and Rijnders G 2017 Appl. Phys. Rev. 4 041103
[21] Tan X L, Gao G Y, Chen P F, Xu H R, Zhi B W, Jin F, Chen F and Wu W B 2014 J. Appl. Phys. 116 203706
[22] Dai P C, Fernandez-Baca J A, Wakabayashi N, Plummer E W, Tomioka Y and Tokura Y 2000 Phys. Rev. Lett. 85 2553
[23] Likodimos V and Pissas M 2006 Phys. Rev. B 73 214417
[24] Bose E, Karmakar S, Chaudhuri B K and Pal S 2008 Solid State Commun. 145 149
[25] Wang L F, Tan X L, Chen P F, Zhi B W, Sun Z G, Huang Z, Gao G Y and Wu W B 2013 Appl. Phys. Lett. 103 072407
[26] Tao J, Niebieskikwiat D, Varela M, Luo W, Schofield M A, Zhu Y, Salamon M B, Zuo J M, Pantelides S T and Pennycook S J 2009 Phys. Rev. Lett. 103 097202
[27] Radaelli P. G, Cox D E, Marezio M and Cheong S W 1997 Phys. Rev. B 55 3015
[28] Huang Q, Lynn J W, Erwin R W, Santoro A, Dender D C, Smolyaninova V N, Ghosh K and Greene R L 2000 Phys. Rev. B 61 8895
[29] Cao G, McCall S, Shepard M and Crow J E 1997 Phys. Rev. B 56 321
[30] Chang Y J, Kim C H, Phark S H, Kim Y S, Yu J and Noh T W 2009 Phys. Rev. Lett. 103 057201
[31] Huang Z, Wang L F, Tan X L, Chen P F, Gao G Y and Wu W B 2010 J. Appl. Phys. 108 083912
[32] Zhang H R, Liu Y B, Wang S H, Hong D S, Wu W B and Sun J R 2016 Chin. Phys. B 25 077306
[33] Chang S H, Chang Y J, Jang S Y., Jeong D W, Jung C U, Kim Y J, Chung J S and Noh T W 2011 Phys. Rev. B 84 104101
[34] Masrour R and Jabar A 2016 Chin. Phys. B 25 107502
[35] Berndt L M, Balbarin V and Suzuki Y 2000 Appl. Phys. Lett. 77 2903
[36] Gao G Y, Yin Z Z, Huang Z, Jin S W and Wu W B 2008 J. Phys. D:Appl. Phys. 41 152001
[37] Algarabel P A, De Teresa J M, Blasco J, Ibarra M R, Kapusta C, Sikora M, Zajac D, Riedi P C and Ritter C 2003 Phys. Rev. B 67 134402
[38] Huang Z, Wang L F, Chen P F, Gao G Y, Tan X L, Zhi B W, Xuan X F and Wu W B 2012 Phys. Rev. B 86 014410
[1] Novel CMOS image sensor pixel to improve charge transfer speed and efficiency by overlapping gate and temporary storage diffusing node
Cui Yang(杨翠), Guo-Liang Peng(彭国良), Wei Mao(毛维), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(1): 018502.
[2] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[3] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[4] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[5] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[6] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
[7] Theoretical study on twisted intramolecular charge transfer of 1-aminoanthraquinone in different solvents
Si-Mei Sun(孙四梅), Song Zhang(张嵩), Chao Jiang(江超), Xiao-Shan Guo(郭小珊), Yi-Hui Hu(胡义慧). Chin. Phys. B, 2018, 27(8): 083401.
[8] Band offset and electronic properties at semipolar plane AlN(1101)/diamond heterointerface
Kong-Ping Wu(吴孔平), Wen-Fei Ma(马文飞), Chang-Xu Sun(孙昌旭), Chang-Zhao Chen(陈昌兆), Liu-Yi Ling(凌六一), Zhong-Gen Wang(王仲根). Chin. Phys. B, 2018, 27(5): 058101.
[9] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
[10] Responsive mechanism and molecular design of di-2-picolylamine-based two-photon fluorescent probes for zinc ions
Mei-Yu Zhu(朱美玉), Ke Zhao(赵珂), Jun Song(宋军), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(2): 023302.
[11] Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions
Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军). Chin. Phys. B, 2018, 27(12): 123101.
[12] Scanning the energy dissipation process of energetic materials based on excited state relaxation and vibration-vibration coupling
Wen-Yan Wang(王文岩), Ning Sui(隋宁), Li-Quan Zhang(张里荃), Ying-Hui Wang(王英惠), Lin Wang(王琳), Quan Wang(王权), Jiao Wang(王娇), Zhi-Hui Kang(康智慧), Yan-Qiang Yang(杨延强), Qiang Zhou(周强), Han-Zhuang Zhang(张汉壮). Chin. Phys. B, 2018, 27(10): 104205.
[13] A-site ordered quadruple perovskite oxides AA3'B4O12
Youwen Long(龙有文). Chin. Phys. B, 2016, 25(7): 078108.
[14] Landau-Zener model for electron loss of low-energy negative fluorine ions to surface cations during grazing scattering on a LiF (001) surface
Wang Zhou(周旺), Meixiao Zhang(张鹛枭), Lihua Zhou(周利华), Hu Zhou(周虎), Yulong Ma(马玉龙), Yanling Guo(郭艳玲), Lin Chen(陈林), Ximeng Chen(陈熙萌). Chin. Phys. B, 2016, 25(11): 113401.
[15] Redox-assisted Li+-storage in lithium-ion batteries
Qizhao Huang(黄启昭) and Qing Wang(王庆). Chin. Phys. B, 2016, 25(1): 018213.
No Suggested Reading articles found!