Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 068102    DOI: 10.1088/1674-1056/abf12c
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility

Xin-Yuan Miao(苗辛原)1,†, Hong-An Ma(马红安)2, Zhuang-Fei Zhang(张壮飞)3, Liang-Chao Chen(陈良超)3, Li-Juan Zhou(周丽娟)1, Min-Si Li(李敏斯)1, and Xiao-Peng Jia(贾晓鹏)2
1 College of Physics, Guangxi University of Science and Technology, Liuzhou 545006, China;
2 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
3 Key Laboratory of Material Physics of Ministry of Education, and School of Physical Engineering, Zhengzhou University, Zhengzhou 450052, China
Abstract  We synthesized and investigated the boron-doped and boron/nitrogen co-doped large single-crystal diamonds grown under high pressure and high temperature (HPHT) conditions (5.9 GPa and 1290℃). The optical and electrical properties and surface characterization of the synthetic diamonds were observed and studied. Incorporation of nitrogen significantly changed the growth trace on surface of boron-containing diamonds. X-ray photoelectron spectroscopy (XPS) measurements showed good evident that nitrogen atoms successfully incorporate into the boron-rich diamond lattice and bond with carbon atoms. Raman spectra showed differences on the as-grown surfaces and interior between boron-doped and boron/nitrogen co-doped diamonds. Fourier transform infrared spectroscopy (FTIR) measurements indicated that the nitrogen incorporation significantly decreases the boron acceptor concentration in diamonds. Hall measurements at room temperature showed that the carriers concentration of the co-doped diamonds decreases, and the mobility increases obviously. The highest hole mobility of sample BNDD-1 reached 980 cm2·V-1·s-1, possible reasons were discussed in the paper.
Keywords:  high pressure and high temperature (HPHT)      diamond      growth of crystal      boron and nitrogen co-doped diamond  
Received:  23 January 2021      Revised:  19 March 2021      Accepted manuscript online:  24 March 2021
PACS:  81.10.Fq (Growth from melts; zone melting and refining)  
  61.72.S- (Impurities in crystals)  
  64.70.dg (Crystallization of specific substances)  
  07.57.Ty (Infrared spectrometers, auxiliary equipment, and techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772120, 11704340, 11604246, and 11865005), the Scientific and Technological Project in Henan Province, China (Grant No. 202102210198), the Natural Science Foundation of Guangxi (China) (Grant No. 2018GXNS-FAA281024), and Doctor Start-up Foundation of Guangxi University of Science and Technology (Grant No. 20Z38).
Corresponding Authors:  Xin-Yuan Miao     E-mail:  miaoxy@gxust.edu.cn

Cite this article: 

Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏) Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility 2021 Chin. Phys. B 30 068102

[1] Thonke K 2003 Semiconductor Science & Technology 18 S20
[2] Isberg J, Hammersberg J, Johansson E, Wikstrom T, Twitchen D J, Whitehead A J, Coe S E and Scarsbrook G A 2002 Science 297 1670
[3] Prikhodko D, Tarelkin S, Bormashov V, Golovanov A, Kuznetsov M, Teteruk D, Volkov A and Buga S 2016 MRS Commun. 6 71
[4] Volpe P N, Pernot J, Muret P and Omnés F 2009 Appl. Phys. Lett. 94 92
[5] Klein T, Achatz P, Kacmarcik J, Marcenat C, Gustafsson F, Marcus J, Bustarret E, Pernot J and Omnes F 2007 Phys. Rev. B 75 165313
[6] Blank V, Buga S, Bormashov V, Denisov V, Kirichenko A, Kulbachinskii V, M Kuznetsov, Kytin V, Kytin G and Tarelkin S 2015 Europhys. Lett. 108 67014
[7] Ekimov E A, Sidorov V A, Bauer E D, Mel'Nik N N, Curro N J, Thompson J D and Stishov S M 2004 Cheminform. 19 351
[8] Locher R, Wagner J, Fuchs F, Wild C, Hiesinger P, Gonon P and Koidl P 1995 Materials Science & Engineering B 29 211
[9] Pernot J, Volpe P N, Omnés F, Muret P, Mortet V and Haenen K 2010 Phys. Rev. B 81 205203
[10] Liang Z Z, Kanda H, Jia X P, Ma H A, Zhu P W and Guan Q F 2006 Carbon 44 913
[11] Lu Z Y, Wang Y K, Fang S, Cai Z H, Zhao Z D, Wang C X, Ma H A, Chen L C and Jia X P 2020 Chin. Phys. B 29 128103
[12] Yiming Z, Larsson F and Larsson K 2013 Theoretical Chemistry Accounts 133 1432
[13] Sonoda S, Won J H, Yagi H and Hatta A 1997 Appl. Phys. Lett. 70 2574
[14] Hu M, Bi N, Li S, Su T, Hu Q, Ma H and Jia X P 2017 CrystEngComm 19 4571
[15] Liang Q, Yan C S, Meng Y, Lai J, Krasnicki S, Mao H K and Hemley R J 2009 J. Phys.: Condens. Matter 21 364215
[16] Lin IN, Hsu T, Lin G-M, Chou Y-P, Chen TT and Cheng H F 2003 Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21 1074
[17] Miao X, Chen L, Ma H, Fang C, Guo L, Fang S, Wang Y and Jia XP 2018 CrystEngComm 20 7109
[18] Miao X, Chen L, Ma H, Fang C, Guo L, Wang Z and Jia X P 2019 CrystEngComm 21 3961
[19] Fang C, Shen W, Zhang Y, Mu P, Zhang Z and Jia X P 2019 Crystal Growth & Design 19 3955
[20] Titantah J T and Lamoen D 2007 Diamond & Related Materials 16 581
[21] Sun S, Jia X, Zhang Z, Li Y, Yan B, Liu X, Ma HA and Jia XP 2013 J. Crystal Growth 377 22
[22] Croot A, Othman, M Z, Conejeros S, Fox N A and Allan N L 2018 J. Phys.: Condens. Matter 30
[23] Li R B 2005 Solid State Commun. 135 155
[24] Mavrin B N, Denisov V N, Popova D M, Skryleva E A, Kuznetsov M S and Nosukhin S A 2008 Phys. Lett. A 372 3914
[25] Blank V D, Denisov V N, Kirichenko A N, Kuznetsov M S, Mavrin B N and Nosukhin S A 2008 Diamond & Related Materials 17 1840
[26] Karna S K, Martyshkin D V, Vohra Y K and Weir S T 2013 MRS Proceedings 1519 mrsf12-1519-mm03-27.
[27] Liu X, Chen X, Singh D J, Stern R A, Wu J, Petitgirard S, Bina C R and Jacobsen S D 2019 Proc. Natl. Acad. Sci. USA 16 7703
[28] Pruvost F and Deneuville A 2001 Diamond & Related Materials 10 531
[29] Mortet V, Vlčková Živcová Z, Taylor A, Frank O, Hubík P and Trémouilles D 2017 Carbon 115 279
[30] Wang Y G, Lau S P, Tay B K and Zhang X H 2002 J. Appl. Phys. 92 7253
[31] Mortet V, Pernot J, Jomard F, Soltani A, Remes Z and Barjon J 2015 Diamond and Related Materials 53 29
[32] Smith S D and Taylor W 1962 Proc. Phys. Soc. 79 1142
[33] Collins A T, Dean P J, Lightowlers E C and Sherman W F 1965 Phys. Rev. 140 1272
[34] Locher R, Wagner J, Fuchs F, Maier M, Gonon P and Koidl P 1995 Diamond & Related Materials 4 678
[1] Effect of metal nanoparticle doping concentration on surface morphology and field emission properties of nano-diamond films
Yao Wang(王垚), Sheng-Wang Yu(于盛旺), Yan-Peng Xue(薛彦鹏), Hong-Jun Hei(黑鸿君), Yan-Xia Wu(吴艳霞), and Yan-Yan Shen(申艳艳). Chin. Phys. B, 2021, 30(6): 068101.
[2] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
[3] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[4] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[5] Effects of microwave oxygen plasma treatments on microstructure and Ge-V photoluminescent properties of diamond particles
Ling-Xiao Sheng(盛凌霄), Cheng-Ke Chen(陈成克), Mei-Yan Jiang(蒋梅燕), Xiao Li(李晓), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(8): 088101.
[6] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[7] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[8] Effects of MgSiO3 on the crystal growth and characteristics of type-Ib gem quality diamond in Fe-Ni-C system
Zhi-Yun Lu(鲁智云), Yong-Kui Wang(王永奎), Shuai Fang(房帅), Zheng-Hao Cai(蔡正浩), Zhan-Dong Zhao(赵占东), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Liang-Chao Chen(陈良超), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2020, 29(12): 128103.
[9] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[10] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵)†, Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩)‡, and Chong-Xin Shan(单崇新)§. Chin. Phys. B, 2020, 29(10): 108102.
[11] Growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in FeNi-C system
Ming-Ming Guo(郭明明), Shang-Sheng Li(李尚升), Mei-Hua Hu(胡美华), Tai-Chao Su(宿太超), Jun-Zuo Wang(王君卓), Guang-Jin Gao(高广进), Yue You(尤悦), Yuan Nie(聂媛). Chin. Phys. B, 2020, 29(1): 018101.
[12] Influences of grain size and microstructure on optical properties of microcrystalline diamond films
Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(1): 018103.
[13] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[14] Structural model of substitutional sulfur in diamond
Hongyu Yu(于洪雨), Nan Gao(高楠), Hongdong Li(李红东), Xuri Huang(黄旭日), Defang Duan(段德芳), Kuo Bao(包括), Mingfeng Zhu(朱明枫), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(8): 088102.
[15] Micron-sized diamond particles containing Ge-V and Si-V color centers
Hang-Cheng Zhang(章航程), Cheng-Ke Chen(陈成克), Ying-Shuang Mei(梅盈爽), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2019, 28(7): 076103.
No Suggested Reading articles found!