Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060313    DOI: 10.1088/1674-1056/abf112
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

Fabrication of microresonators by using photoresist developer as etchant

Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬)
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
Abstract  In superconducting circuit, microwave resonators and capacitors are crucial components, and their quality has a strong impact on circuit performance. Here we develop a novel wet etching process to define these two components using common photoresist developer as etchant. This method reduces subsequent steps and can be completed immediately after development. By measuring the internal quality factor of resonators, we show that it is possible to achieve similar or better performance when compared with samples made by standard etching processes. This easy-to-implement method may boost the yield hence providing an alternative fabrication process for microwave resonators and capacitors.
Keywords:  superconducting qubit      microresonator      easy-to-implement      high quality factors  
Received:  18 November 2020      Revised:  02 March 2021      Accepted manuscript online:  23 March 2021
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  85.25.Am (Superconducting device characterization, design, and modeling)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301802), the National Natural Science Foundation of China (Grant Nos. 61521001 and 11890704), and the Key R&D Program of Guangdong Province, China (Grant No. 2018B030326001).
Corresponding Authors:  Yang Yu     E-mail:  yuyang@nju.edu.cn

Cite this article: 

Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬) Fabrication of microresonators by using photoresist developer as etchant 2021 Chin. Phys. B 30 060313

[1] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 7779
[2] Jurcevic P, Javadi-Abhari A, Bishop L S, et al. 2021 Quantum Science and Technology 6 025020
[3] Montanaro A 2016 npj Quantum Information 2 1
[4] O'Malley P J J, Babbush R, Kivlichan I D, et al. 2014 Phys. Rev.X 6 031007
[5] Pei P, Huang H F, Guo Y Q, Song H S2016 Chin. Phys. Lett. 33 020301
[6] Zhao J, Hu Y Y, Tong P Q2015 Chin. Phys. Lett. 32 060501
[7] Ofek N, Petrenko A, Heeres R, et al. 2016 Nature 536 7617
[8] Reed M D, DiCarlo L, Nigg S E, et al. 2012 Nature 4827385
[9] Havlíćek V, Córcoles A D, Temme K, et al. 2019 Nature 567 7747
[10] Google AI Quantum 2020 Science 369 6507
[11] Hempel C, Maier C, Romero J, et al. 2018 Phys. Rev. X 8 031022
[12] Kjaergaard M, Schwartz M E, Braumüller J, et al. 2020 Annual Rev. Condensed Matter Phys. 11 369
[13] Stehli A, Brehm J D, Wolz T, et al. 2020 Appl. Phys. Lett. 117 124005
[14] Place A P M, Rodgers L V H, Mundada P, et al. 2020 arXiv: 2003.00024
[15] Nersisyan A, Poletto S, Alidoust N, et al. 2019 IEEE International Electron Devices Meeting (IEDM) 31.1.1-31.1.4
[16] Koch J, Terri M Y, Gambetta J, et al. 2007 Phys. Rev. A 76 042319
[17] Kamal A, Yoder J L, Yan F, et al. 2016 arXiv:1606.09262
[18] Wang C, Axline C, Gao Y Y, et al. 2015 Appl. Phys. Lett. 107 162601
[19] Serniak K, Hays M, De Lange G, et al. 2018 Phys. Rev. Lett. 121 157701
[20] Wang C, Gao Y Y, Pop I M, et al. 2014 Nat. Commun. 5 1
[21] Gustavsson S, Yan F, Catelani G, et al. 2016 Science 354 6319
[22] Braginsky V B, Ilchenko V S, Bagdassarov K S 1987 Phys. Lett. A 120 6
[23] Melville A, Calusine G, Woods W, et al. 2020 Appl. Phys. Lett. 117 124004
[24] Wang Y Y, Fang M F 2020 Chin. Phys. B 29 030304
[25] Martinis J M, Cooper K B, McDermott R, et al. 2016 Phys. Rev. Lett. 95 210503
[26] Barends R, Kelly J, Megrant A, et al. 2013 Phys. Rev. Lett. 111 080502
[27] Khalil M S, Stoutimore M J A, Wellstood F C, et al. 2012 J. Appl. Phys. 111 054510
[28] Megrant A, Neill C, Barends R, et al. 2012 Appl. Phys. Lett. 100113510
[29] Phillips W A 1987 Reports on Progress in Physics 50 1657
[1] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[2] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[3] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[4] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[5] Hardware for multi-superconducting qubit control and readout
Zhan Wang(王战), Hai Yu(于海), Rongli Liu(刘荣利), Xiao Ma(马骁), Xueyi Guo(郭学仪), Zhongcheng Xiang(相忠诚), Pengtao Song(宋鹏涛), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(11): 110305.
[6] Compound-induced transparency in three-cavity coupled structure
Hao-Ye Qin(秦昊烨), Yi-Heng Yin(尹贻恒), and Ming Ding(丁铭). Chin. Phys. B, 2020, 29(12): 124208.
[7] Manipulation of superconducting qubit with direct digital synthesis
Zhi-Yuan Li(李志远), Hai-Feng Yu(于海峰), Xin-Sheng Tan(谭新生), Shi-Ping Zhao(赵士平), Yang Yu(于扬). Chin. Phys. B, 2019, 28(9): 098505.
[8] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
[9] Nb-based Josephson parametric amplifier for superconducting qubit measurement
Fei-Fan Su(宿非凡), Zi-Ting Wang(王子婷), Hui-Kai Xu(徐晖凯), Shou-Kuan Zhao(赵寿宽), Hai-Sheng Yan(严海生), Zhao-Hua Yang(杨钊华), Ye Tian(田野), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2019, 28(11): 110303.
[10] Cavity-induced ATS effect on a superconducting Xmon qubit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Jianghao Ding(丁江浩), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Yanjun Liu(刘彦军), Zhongcheng Xiang(相忠诚), Jie Li(李洁), Yirong Jin(金贻荣), Yuxi Liu(刘玉玺), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(8): 084202.
[11] Solid-state quantum computation station
Fanming Qu(屈凡明), Zhongqing Ji(姬忠庆), Ye Tian(田野), Shiping Zhao(赵士平). Chin. Phys. B, 2018, 27(7): 070301.
[12] Demonstration of superadiabatic population transfer in superconducting qubit
Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 063202.
[13] Superconducting quantum bits
Wei-Yang Liu(刘伟洋), Dong-Ning Zheng(郑东宁), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2018, 27(2): 027401.
[14] Invariants-based shortcuts for fast generating Greenberger—Horne—Zeilinger state among three superconducting qubits
Jing Xu(徐晶), Lin Yu(于琳), Jin-Lei Wu(吴金雷), Xin Ji(计新). Chin. Phys. B, 2017, 26(9): 090301.
[15] Bridge-free fabrication process for Al/AlOx/Al Josephson junctions
Ke Zhang(张珂), Meng-Meng Li(李蒙蒙), Qiang Liu(刘强), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2017, 26(7): 078501.
No Suggested Reading articles found!