Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 084212    DOI: 10.1088/1674-1056/abd766
Special Issue: SPECIAL TOPIC — Optical field manipulation
SPECIAL TOPIC—Optical field manipulation Prev   Next  

Impact of the spatial coherence on self-interference digital holography

Xingbing Chao(潮兴兵)1,4, Yuan Gao(高源)1, Jianping Ding(丁剑平)1,2,3,†, and Hui-Tian Wang(王慧田)1,2
1 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
3 Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China;
4 College of Science, Jiujiang University, Jiujiang 332005, China
Abstract  Owing to the unique feature that the signal and reference waves of self-interference digital holography (SIDH) contain the same spatial information from the same point of object, compared with conventional digital holography, the SIDH has the special spatial coherence properties. We present a statistical optics approach to analyzing the formation of cross-correlation image in SIDH. Our study reveals that the spatial coherence of illumination light can greatly influence the imaging characteristics of SIDH, and the impact extent of the spatial coherence depends substantially on the recording distance of hologram. The theoretical conclusions are supported well by numerical simulation and optical experiments.
Keywords:  holography      imaging and optical processing      photon statistics and coherence theory      interference  
Received:  30 October 2020      Revised:  16 December 2020      Accepted manuscript online:  30 December 2020
PACS:  42.40.-i (Holography)  
  42.30.-d (Imaging and optical processing)  
  42.25.Hz (Interference)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91750202, 91750114, and 11922406), the National Key Research and Development Program of China (Grant Nos. 2018YFA0306200 and 2017YFA0303700), and the Science and Technology Project of Jiangxi Provincial Education Department, China (Grant No. GJJ190915).
Corresponding Authors:  Jianping Ding     E-mail:  jpding@nju.edu.cn

Cite this article: 

Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田) Impact of the spatial coherence on self-interference digital holography 2021 Chin. Phys. B 30 084212

[1] Osten W, Faridian A, Gao P, Körner K, Naik D, Pedrini G, Singh A K, Takeda M and Wilke M 2014 Appl. Opt. 53 G44
[2] Kreis T 2016 IEEE Trans. Ind. Informat. 12 240
[3] Kelner R and Rosen J 2015 IEEE Trans. Ind. Informat. 12 220
[4] Gao H Y, Yao Q X, Pan L, Zheng Z Q, Liu J C, Zheng H D, Zeng C, Yu Y J, Sun T and Zeng Z X 2016 Chin. Phys. B 25 094203
[5] Hong J and Kim M K 2013 J. Europ. Opt. Soc. Rap. Public. 8 13077
[6] Kihong C, Junkyu Y, Seunghwi Y and Sung-Wook M 2017 Opt. Lett. 42 3940
[7] Rosen J, Anand V, Kumar M, Ratnam M and Mukherjee S 2019 Adv. Opt. Photon. 11 1
[8] Kim and Myung K 2013 Opt. Express 21 9636
[9] Rosen J and Brooker G 2008 Nat. Photon. 2 190
[10] Yanagawa T, Abe R and Hayasaki Y 2015 Opt. Lett. 40 3312
[11] Siegel N, Lupashin V, Storrie B and Brooker G 2016 Nat. Photon. 10 802
[12] Man T, Wan Y, Wu F and Wang D 2017 Appl. Opt. 56 F91
[13] Kim M K 2013 Appl. Opt. 52 A117
[14] Man T L, Wan Y H, Yan W J, Wang X H, Peterman E J G and Wang D Y 2018 Biomed. Opt. Express 9 2614
[15] Katz O, Heidmann P, Fink M and Gigan S 2014 Nat. Photon. 8 784
[16] Nick A, Grace K, Reinhard H, Ben M, Emrah B, Ren N and Laura W 2018 Optica 5 1
[17] Hong J and Kim M K 2013 Opt. Lett. 38 5196
[18] Liang D, Zhang Q, Wang J and Liu J 2020 J. Mod. Opt. 67 92
[19] Weng J W, Clark D C and Kim M K 2016 Opt. Commun. 366 88
[20] Tang M Y, Wu M T, Zang R H, Rong T D, Du Y L, Ma F Y, Duan Z Y and Gong Q X 2019 Acta Phys. Sin. 68 104204 (in Chinese)
[21] Bouchal P, Kapitán J, Chmelík R and Bouchal Z 2011 Opt. Express 19 15603
[22] Wan Y H, Man T L, Chen H, Jiang Z Q and Wang D Y 2014 Chin. Phys. Lett. 31 44203
[23] Chao X B, Pan L P, Wang Z S, Yang F T and Ding J P 2019 Acta Phys. Sin. 68 064203 (in Chinese)
[24] Goodman J W 2015 Statistical optics, 2nd edn. (John Wiley & Sons) pp. 152-219
[25] Liang M D, Chen L, Hu Y H, Lin W T and Chen Y H 2018 Chin. Phys. B 27 104202
[26] Mandel L and Wolf E 1995 Optical coherence and quantum optics (Cambridge University Press) pp. 128-141, p. 189
[27] Xia X Y and Xia J 2016 Chin. Phys. B 25 094204
[28] Rosen J and Brooker G 2007 Opt. Lett. 32 912
[29] Wang F, Liu X and Cai Y 2015 Prog. Electromagn. Res. 150 123
[30] Guo C S, Xie Y Y and Sha B 2014 Opt. Lett. 39 2338
[31] Pang Z H and Zhao D M 2019 Opt. Lett. 44 4889
[32] Sun P C and Leith E N 1994 Appl. Opt. 33 597
[1] Possibility to break through limitation of measurement range in dual-wavelength digital holography
Tuo Li(李拓), Wen-Xiu Lei(雷文秀), Xin-Kai Sun(孙鑫凯), Jun Dong(董军), Ye Tao(陶冶), and Yi-Shi Shi(史祎诗). Chin. Phys. B, 2021, 30(9): 094201.
[2] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[3] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
[4] Broad-band phase retrieval method for transient radial shearing interference using chirp Z transform technique
Fang Xue(薛芳), Ya-Xuan Duan(段亚轩), Xiao-Yi Chen(陈晓义), Ming Li(李铭), Suo-Chao Yuan(袁索超), and Zheng-Shang Da(达争尚). Chin. Phys. B, 2021, 30(8): 084209.
[5] Integrated superconducting circuit for qubit and resonator protection
Xiao-Pei Yang(杨晓沛), Zhi-Kun Han(韩志坤), Shu-Qing Song(宋树清), Wen Zheng(郑文), Dong Lan(兰栋), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 078403.
[6] Wave-particle duality relation with a quantum N-path beamsplitter
Dong-Yang Wang(王冬阳), Jun-Jie Wu(吴俊杰), Yi-Zhi Wang(王易之), Yong Liu(刘雍), An-Qi Huang(黄安琪), Chun-Lin Yu(于春霖), and Xue-Jun Yang(杨学军). Chin. Phys. B, 2021, 30(5): 050302.
[7] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[8] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[9] Incoherent digital holographic spectral imaging with high accuracy of image pixel registration
Feng-Ying Ma(马凤英), Xi Wang(王茜), Yuan-Zhuang Bu(卜远壮), Yong-Zhi Tian(田勇志), Yanli Du(杜艳丽) , Qiao-Xia Gong(弓巧侠), Ceyun Zhuang(庄策云), Jinhai Li(李金海), and Lei Li(李磊). Chin. Phys. B, 2021, 30(4): 044202.
[10] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] Taking snapshots of a moving electron wave packet in molecules using photoelectron holography in strong-field tunneling ionization
Mingrui He(何明睿), Yang Fan(樊洋), Yueming Zhou(周月明), and Peixiang Lu(陆培祥). Chin. Phys. B, 2021, 30(12): 123202.
[13] Minimum structure of high-harmonic spectrafrom aligned O2 and N2 molecules
Bo Yan(闫博), Yi-Chen Wang(王一琛), Qing-Hua Gao(高庆华), Fang-Jing Cheng(程方晶), Qiu-Shuang Jing(景秋霜), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2021, 30(11): 114213.
[14] Fano interference and transparency in a waveguide-nanocavity hybrid system with an auxiliary cavity
Yu-Xin Shu(树宇鑫), Xiao-San Ma(马小三), Xian-Shan Huang(黄仙山), Mu-Tian Cheng(程木田), and Jun-Bo Han(韩俊波). Chin. Phys. B, 2021, 30(10): 104204.
[15] Tunable characteristic of phase-locked quantum cascade laser arrays
Zeng-Hui Gu(顾增辉), Jin-Chuan Zhang(张锦川), Huan Wang(王欢), Peng-Chang Yang(杨鹏昌), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Jun-Qi Liu(刘俊岐), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Feng-Qi Liu(刘峰奇), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(10): 104201.
[1] HE FU-QING, LONG XIAN-GUAN, PENG XIU-FENG, LUO ZHENG-MING, AN ZHU. K-SHELL IONIZATION OF IRON BY ELECTRON BOMBARDMENT[J]. Acta Phys. Sin. (Overseas Edition), 1996, 5(7): 499 -504 .
[2] LI SHU-WEI, JIN YI-XIN, ZHANG BAO-LIN, ZHOU TIAN-MING, JIANG HONG, NING YONG-QIANG. UNCOOLED GaInAsSb INFRARED DETECTORS GROWN BY METALORGANIC CHEMICAL VAPOR DEPOSITION[J]. Acta Phys. Sin. (Overseas Edition), 1997, 6(6): 401 -405 .
[3] Xie Fei-Xiang, Meng Shu-Chao, Dai Yuan-Dong, Li Zhuang-Zhi, Ma Ping, Yang Tao, Nie Rui-Juan, Wang Fu-Ren, Liu Xin-Yuan. Development of 1.3GHz high-T-c rf SQUID[J]. Chin. Phys., 2001, 10(1): 100 -104 .
[4] Yao Jin-Lei, Wang Ru-Wu, Yang De-Ren, Yan Mi, Zhang Li-Gang. Giant magnetoresistance in Y0.9La0.1Mn6Sn6 compound[J]. Chin. Phys., 2004, 13(4): 542 -545 .
[5] Ding Hai-Yong, Xu Xi-Xiang, Yang Hong-Xiang. An extended functional transformation method and its application in some evolution equations[J]. Chin. Phys., 2005, 14(9): 1687 -1690 .
[6] Chen Bao-Xin. Gaussian wave formalism model for propagation of charged-particle beam through a first-order optical systems[J]. Chin. Phys., 2006, 15(3): 496 -501 .
[7] Muhammad Ashfaq Ahmad, Lin Jie, Liu Shu-Tian, Ma Ai-Qun, Ma Zhi-Min, Qian Yan. Amplitude-squared squeezing of the generalized odd--even coherent states of the anharmonic oscillator in a finite-dimensional Hilbert space[J]. Chin. Phys., 2007, 16(5): 1351 -1356 .
[8] Zhang Xi-Xiang, Liu Ying, Cao Mao-Sheng, Wang Fu-Chi, Li Xiang, Zhai Fei-Fei. Synthesis and photoluminescence study on ZnO nano-particles[J]. Chin. Phys., 2007, 16(9): 2769 -2772 .
[9] Xu Zhe, Liu Chong-Xin. Realization of fractional-order Liu chaotic system by a new circuit unit[J]. Chin. Phys. B, 2008, 17(11): 4033 -4038 .
[10] Zhang Xian-Zhou, Gong Wei-Gui, Tan Yong-Gang, Ren Zhen-Zhong, Guo Xiao-Tian. Quantum key distribution series network protocol with M-classical Bobs[J]. Chin. Phys. B, 2009, 18(6): 2143 -2148 .