Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 084212    DOI: 10.1088/1674-1056/abd766
Special Issue: SPECIAL TOPIC — Optical field manipulation
SPECIAL TOPIC—Optical field manipulation Prev   Next  

Impact of the spatial coherence on self-interference digital holography

Xingbing Chao(潮兴兵)1,4, Yuan Gao(高源)1, Jianping Ding(丁剑平)1,2,3,†, and Hui-Tian Wang(王慧田)1,2
1 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
3 Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China;
4 College of Science, Jiujiang University, Jiujiang 332005, China
Abstract  Owing to the unique feature that the signal and reference waves of self-interference digital holography (SIDH) contain the same spatial information from the same point of object, compared with conventional digital holography, the SIDH has the special spatial coherence properties. We present a statistical optics approach to analyzing the formation of cross-correlation image in SIDH. Our study reveals that the spatial coherence of illumination light can greatly influence the imaging characteristics of SIDH, and the impact extent of the spatial coherence depends substantially on the recording distance of hologram. The theoretical conclusions are supported well by numerical simulation and optical experiments.
Keywords:  holography      imaging and optical processing      photon statistics and coherence theory      interference  
Received:  30 October 2020      Revised:  16 December 2020      Accepted manuscript online:  30 December 2020
PACS:  42.40.-i (Holography)  
  42.30.-d (Imaging and optical processing)  
  42.25.Hz (Interference)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91750202, 91750114, and 11922406), the National Key Research and Development Program of China (Grant Nos. 2018YFA0306200 and 2017YFA0303700), and the Science and Technology Project of Jiangxi Provincial Education Department, China (Grant No. GJJ190915).
Corresponding Authors:  Jianping Ding     E-mail:  jpding@nju.edu.cn

Cite this article: 

Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田) Impact of the spatial coherence on self-interference digital holography 2021 Chin. Phys. B 30 084212

[1] Osten W, Faridian A, Gao P, Körner K, Naik D, Pedrini G, Singh A K, Takeda M and Wilke M 2014 Appl. Opt. 53 G44
[2] Kreis T 2016 IEEE Trans. Ind. Informat. 12 240
[3] Kelner R and Rosen J 2015 IEEE Trans. Ind. Informat. 12 220
[4] Gao H Y, Yao Q X, Pan L, Zheng Z Q, Liu J C, Zheng H D, Zeng C, Yu Y J, Sun T and Zeng Z X 2016 Chin. Phys. B 25 094203
[5] Hong J and Kim M K 2013 J. Europ. Opt. Soc. Rap. Public. 8 13077
[6] Kihong C, Junkyu Y, Seunghwi Y and Sung-Wook M 2017 Opt. Lett. 42 3940
[7] Rosen J, Anand V, Kumar M, Ratnam M and Mukherjee S 2019 Adv. Opt. Photon. 11 1
[8] Kim and Myung K 2013 Opt. Express 21 9636
[9] Rosen J and Brooker G 2008 Nat. Photon. 2 190
[10] Yanagawa T, Abe R and Hayasaki Y 2015 Opt. Lett. 40 3312
[11] Siegel N, Lupashin V, Storrie B and Brooker G 2016 Nat. Photon. 10 802
[12] Man T, Wan Y, Wu F and Wang D 2017 Appl. Opt. 56 F91
[13] Kim M K 2013 Appl. Opt. 52 A117
[14] Man T L, Wan Y H, Yan W J, Wang X H, Peterman E J G and Wang D Y 2018 Biomed. Opt. Express 9 2614
[15] Katz O, Heidmann P, Fink M and Gigan S 2014 Nat. Photon. 8 784
[16] Nick A, Grace K, Reinhard H, Ben M, Emrah B, Ren N and Laura W 2018 Optica 5 1
[17] Hong J and Kim M K 2013 Opt. Lett. 38 5196
[18] Liang D, Zhang Q, Wang J and Liu J 2020 J. Mod. Opt. 67 92
[19] Weng J W, Clark D C and Kim M K 2016 Opt. Commun. 366 88
[20] Tang M Y, Wu M T, Zang R H, Rong T D, Du Y L, Ma F Y, Duan Z Y and Gong Q X 2019 Acta Phys. Sin. 68 104204 (in Chinese)
[21] Bouchal P, Kapitán J, Chmelík R and Bouchal Z 2011 Opt. Express 19 15603
[22] Wan Y H, Man T L, Chen H, Jiang Z Q and Wang D Y 2014 Chin. Phys. Lett. 31 44203
[23] Chao X B, Pan L P, Wang Z S, Yang F T and Ding J P 2019 Acta Phys. Sin. 68 064203 (in Chinese)
[24] Goodman J W 2015 Statistical optics, 2nd edn. (John Wiley & Sons) pp. 152-219
[25] Liang M D, Chen L, Hu Y H, Lin W T and Chen Y H 2018 Chin. Phys. B 27 104202
[26] Mandel L and Wolf E 1995 Optical coherence and quantum optics (Cambridge University Press) pp. 128-141, p. 189
[27] Xia X Y and Xia J 2016 Chin. Phys. B 25 094204
[28] Rosen J and Brooker G 2007 Opt. Lett. 32 912
[29] Wang F, Liu X and Cai Y 2015 Prog. Electromagn. Res. 150 123
[30] Guo C S, Xie Y Y and Sha B 2014 Opt. Lett. 39 2338
[31] Pang Z H and Zhao D M 2019 Opt. Lett. 44 4889
[32] Sun P C and Leith E N 1994 Appl. Opt. 33 597
[1] Three-dimensional coupled-mode model and characteristics of low-frequency sound propagation in ocean waveguide with seamount topography
Ya-Xiao Mo(莫亚枭), Chao-Jin Zhang(张朝金), Li-Cheng Lu(鹿力成), and Sheng-Ming Guo(郭圣明). Chin. Phys. B, 2022, 31(8): 084301.
[2] All-fiber erbium-doped dissipative soliton laser with multimode interference based on saturable-reserve saturable hybrid optical switch
Xin Zhao(赵鑫), Renyan Wan(王仁严), Weiyan Li(李卫岩), Liang Jin(金亮), He Zhang(张贺), Yan Li(李岩), Yingtian Xu(徐英添), Linlin Shi(石琳琳), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(6): 064215.
[3] Deep learning facilitated whole live cell fast super-resolution imaging
Yun-Qing Tang(唐云青), Cai-Wei Zhou(周才微), Hui-Wen Hao(蒿慧文), and Yu-Jie Sun(孙育杰). Chin. Phys. B, 2022, 31(4): 048705.
[4] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[5] Reconstruction resolution enhancement of EPISM based holographic stereogram with hogel spatial multiplexing
Yunpeng Liu(刘云鹏), Teng Zhang(张腾), Jian Su(苏健), Tao Jing(荆涛), Min Lin(蔺敏), Pei Li(李沛), and Xingpeng Yan(闫兴鹏). Chin. Phys. B, 2022, 31(4): 044201.
[6] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[7] Non-Rayleigh photon statistics of superbunching pseudothermal light
Chao-Qi Wei(卫超奇), Jian-Bin Liu(刘建彬), Xue-Xing Zhang(张学星), Rui Zhuang(庄睿), Yu Zhou(周宇), Hui Chen(陈辉), Yu-Chen He(贺雨晨), Huai-Bin Zheng(郑淮斌), and Zhuo Xu(徐卓). Chin. Phys. B, 2022, 31(2): 024209.
[8] Estimation of co-channel interference between cities caused by ducting and turbulence
Kai Yang(杨凯), Zhensen Wu(吴振森), Xing Guo(郭兴), Jiaji Wu(吴家骥), Yunhua Cao(曹运华), Tan Qu(屈檀), and Jiyu Xue(薛积禹). Chin. Phys. B, 2022, 31(2): 024102.
[9] Nearfield acoustic holography in a moving medium based on particle velocity input using nonsingular propagator
Bi-Chun Dong(董必春), Run-Mei Zhang(张润梅), Bin Yuan(袁彬), and Chuan-Yang Yu(俞传阳). Chin. Phys. B, 2022, 31(2): 024303.
[10] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[11] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[12] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[13] Possibility to break through limitation of measurement range in dual-wavelength digital holography
Tuo Li(李拓), Wen-Xiu Lei(雷文秀), Xin-Kai Sun(孙鑫凯), Jun Dong(董军), Ye Tao(陶冶), and Yi-Shi Shi(史祎诗). Chin. Phys. B, 2021, 30(9): 094201.
[14] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
[15] Broad-band phase retrieval method for transient radial shearing interference using chirp Z transform technique
Fang Xue(薛芳), Ya-Xuan Duan(段亚轩), Xiao-Yi Chen(陈晓义), Ming Li(李铭), Suo-Chao Yuan(袁索超), and Zheng-Shang Da(达争尚). Chin. Phys. B, 2021, 30(8): 084209.
No Suggested Reading articles found!