Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017304    DOI: 10.1088/1674-1056/abccbb
Special Issue: SPECIAL TOPIC—Unconventional superconductivity
SPECIAL TOPIC—Unconventional superconductivity Prev   Next  

Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn2

Meng-Di Zhang(张孟迪)1,2, Sheng Xu(徐升)3, Xing-Yuan Hou(侯兴元)1, Ya-Dong Gu(谷亚东)1,2, Fan Zhang(张凡)1,2, Tian-Long Xia(夏天龙)3, Zhi-An Ren(任治安)1,2,4,†, Gen-Fu Chen(陈根富)1,2,4,‡, Ning Hao(郝宁)5, and Lei Shan(单磊)1,2,6,7,§
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China; 5 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; 6 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 7 Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
Abstract  We report the tip-induced superconductivity on the topological semimetal NbSb2, similar to the observation on TaAs2 and NbAs2. Belonging to the same family of MPn2, all these materials possess similar band structures, indicating that the tip-induced superconductivity may be closely related to their topological nature and share a common mechanism. Further analysis suggests that a bulk band should play the dominant role in such local superconductivity most likely through interface coupling. In addition, the compatibility between the induced superconductivity and tips' ferromagnetism gives an evidence for its unconventional nature. These results provide further clues to elucidate the mechanism of the tip-induced superconductivity observed in topological materials.
Keywords:  tip-induced superconductivity      topological      mechanism  
Received:  30 October 2020      Revised:  13 November 2020      Accepted manuscript online:  23 November 2020
PACS:  73.40.Jn (Metal-to-metal contacts)  
  73.40.-c (Electronic transport in interface structures)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
  85.30.Hi (Surface barrier, boundary, and point contact devices)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0302904, 2017YFA0303201, 2018YFA0305602, and 2016YFA0300604), the National Natural Science Foundation of China (Grants Nos. 12074002, 11574372, 11674331, 11804379, and 11874417), the National Basic Research Program of China (Grant No. 2015CB921303), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grants Nos. XDB07020300, XDB07020100, and XDB33030100), the Collaborative Innovation Program of Hefei Science Center, the Chinese Academy of Sciences (Grant No. 2020HSC-CIP002), CASHIPS Director's Fund, China (Grant No. BJPY2019B03), and the Recruitment Program for Leading Talent Team of Anhui Province, China (2019-16).
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail: §Corresponding author. E-mail:   

Cite this article: 

Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊) Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn2 2021 Chin. Phys. B 30 017304

1 Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
2 Weng H M, Dai X and Fang Z 2016 J. Phys.: Condens. Matter 28 303001
3 Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004
4 Qi X L, Hughes T L, Raghu S and Zhang S C 2009 Phys. Rev. Lett. 102 187001
5 Beenakker C W.J 2013 Annu. Rev. Condens. Matter Phys. 4 113
6 Tang E and Fu L 2014 Nat. Phys. 10 964
7 Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501
8 Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G, Fu L, Ding H and Gao H J 2018 Science 362 333
9 Beenakker C and Kouwenhoven L 2016 Nat. Phys. 12 618
10 Wilczek F 2009 Nat. Phys. 5 614
11 Kirshenbaum K, Syers P S, Hope A P, Butch N P, Jeffries J R, Weir S T, Hamlin J J, Maple M B, Vohra Y K and Paglione J 2013 Phys. Rev. Lett. 111 087001
12 Qi Y P, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Sü\ss V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Förster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B H and Medvedev S A 2016 Nat. Commun. 7 11038
13 Kang D F, Zhou Y Z, Yi W, Yang C L, Guo J, Shi Y G, Zhang S, Wang Z, Zhang C, Jiang S, Li A, Yang K, Wu Q, Zhang G M, Sun L L and Zhao Z X 2015 Nat. Commun. 6 7804
14 He L P, Jia Y T, Zhang S J, Hong X C, Jin C Q and Li S Y 2016 npj Quantum Mater. 1 16014
15 Shruti, Maurya V K, Neha P, Srivastava P and Patnaik S 2015 Phys. Rev. B 92 020506
16 Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P and Cava R J 2010 Phys. Rev. Lett. 104 057001
17 Xu J P, Wang M X, Liu Z L, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001
18 Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003
19 Aggarwal L, Gaurav A, Thakur G S, Haque Z, Ganguli A K and Sheet G 2016 Nat. Mater. 15 32
20 Wang H, Wang H C, Liu H W, Lu H, Yang W H, Jia S, Liu X J, Xie X C, Wei J and Wang J 2016 Nat. Mater. 15 38
21 Aggarwal L, Gayen S, Das S, Kumar R, Sü\ss V, Felser C, Shekhar C and Sheet G 2017 Nat. Commun. 8 1
22 Wang H, Wang H C, Chen Y Q, Luo J W, Yuan Z J, Liu J, Wang Y, Jia S, Liu X J, Wei J and Wang J 2017 Sci. Bull. 62 425
23 Luo J W, Li Y N, Li J C, Hashimoto T, Kawakami T, Lu H, Jia S, Sato M and Wang J 2019 Phys. Rev. Materials 3 124201
24 Hou X Y, Gu Y D, Li S J, Zhao L X, Zhu W L, Wang Z, Zhang M D, Zhang F, Zhang L, Zi H, Wu Y W, Yang H X, Ren Z A, Zhang P, Chen G F, Hao N and Shan L 2020 Phys. Rev. B 101 134503
25 Hou X Y, Wang Z, Gu Y D, He J B, Chen D, Zhu W L, Zhang M D, Zhang F, Xu Y F, Zhang S, Yang H X, Ren Z A, Weng H M, Hao N, Lv W G, Hu J P, Chen G F and Shan L 2019 Phys. Rev. B 100 235109
26 Aggarwal L, Singh C K, Aslam M, Singha R, Pariari A, Gayen S, Kabir M, Mandal P and Sheet G 2019 J. Phys.: Condens. Matter 31 485707
27 Zhang M D, Hou X Y, Wang Q, Wang Y Y, Zhao L X, Wang Z, Gu Y D, Zhang F, Xia T L, Ren Z A, Chen G F, Hao N and Shan L 2020 Phys. Rev. B 102 085139
28 Li Y P, Wang Z, Lu Y H, Yang X J, Shen Z X, Sheng F, Feng C M, Zheng Y and Xu Z A arXiv:1603.04056
29 Xu C C, Chen J, Zhi G X, Li Y K, Dai J H and Cao C 2016 Phys. Rev. B 93 195106
30 Yuan Z J, Lu H, Liu Y J, Wang J F and Jia S 2016 Phys. Rev. B 93 184405
31 Wang Y Y, Yu Q H, Guo P J, Liu K and Xia T L 2016 Phys. Rev. B 94 041103
32 Tanaka Y and Kashiwaya S 1995 Phys. Rev. Lett. 74 3451
33 Sheet G, Mukhopadhyay S and Raychaudhuri P 2004 Phys. Rev. B 69 134507
34 Deutscher G 2005 Rev. Mod. Phys. 77 109
35 Golubov A A, Brinkman A, Tanaka Y, Mazin I I and Dolgov O V 2009 Phys. Rev. Lett. 103 077003
36 Leijnse M and Flensberg K 2012 Supercond. Sci. Technol. 27 124003
37 Alicea J 2012 Rep. Prog. Phys. 75 076501
38 Bourgeois O and Dynes R C 2002 Phys. Rev. B 65 144503
39 Sidorenko A S, Zdravkov V I, Prepelitsa A A, Helbig C, Luo Y, Gsell S, Schreck M, Klimm S, Horn S, Tagirov L R and Tidecks R 2003 Ann. Phys. 12 37
40 Gong X X, Zhou H X, Xu P C, Yue D, Zhu K, Jin X F, Tian H, Zhao G J and Chen T Y 2015 Chin. Phys. Lett. 32 067402
41 Ji Y, Chien C L, Tomioka Y and Tokura Y 2002 Phys. Rev. B 66 012410
42 Fay D and Appel J 1980 Phys. Rev. B 22 3173
43 Cho G Y, Bardarson J H, Lu Y M and Moore J E 2012 Phys. Rev. B 86 214514
44 Wei H Z, Chao S P and Aji V 2014 Phys. Rev. B 89 014506
45 Das S, Aggarwal L, Roychowdhury S, Aslam M, Gayen S, Biswas K and Sheet G 2016 Appl. Phys. Lett. 109 132601
46 Wang H, Liu Y Z, Zhou H B, Ji H R and Wang J2020 Sci. China Phys. Mech. Astron. 63
[1] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
[2] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[3] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[4] Unusual electronic structure of Dirac material BaMnSb2 revealed by angle-resolved photoemission spectroscopy
Hongtao Rong(戎洪涛), Liqin Zhou(周丽琴), Junbao He(何俊宝), Chunyao Song(宋春尧), Yu Xu(徐煜), Yongqing Cai(蔡永青), Cong Li(李聪), Qingyan Wang(王庆艳), Lin Zhao(赵林), Guodong Liu(刘国东), Zuyan Xu(许祖彦), Genfu Chen(陈根富), Hongming Weng(翁红明), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2021, 30(6): 067403.
[5] Reputational preference and other-regarding preference based rewarding mechanism promotes cooperation in spatial social dilemmas
Huayan Pei(裴华艳), Guanghui Yan(闫光辉), and Huanmin Wang(王焕民). Chin. Phys. B, 2021, 30(5): 050203.
[6] Decomposition reaction of phosphate rock under the action of microwave plasma
Hui Zheng(郑慧), Meng Yang(杨猛), Cheng-Fa Jiang(江成发), and Dai-Jun Liu(刘代俊). Chin. Phys. B, 2021, 30(4): 045201.
[7] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
[8] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[9] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[10] Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films
Qiang Li(李强), Dao Wang(王岛), Yan Zhang(张岩), Yu-Shan Li(李育珊), Ai-Hua Zhang(张爱华), Rui-Qiang Tao(陶瑞强), Zhen Fan(樊贞), Min Zeng(曾敏), Guo-Fu Zhou(周国富), Xu-Bing Lu(陆旭兵), and Jun-Ming Liu(刘俊明). Chin. Phys. B, 2021, 30(2): 027701.
[11] Mechanism of titanium-nitride chemical mechanical polishing
Dao-Huan Feng(冯道欢), Ruo-Bing Wang(王若冰), Ao-Xue Xu(徐傲雪), Fan Xu(徐帆), Wei-Lei Wang(汪为磊), Wei-Li Liu(刘卫丽), and Zhi-Tang Song(宋志棠). Chin. Phys. B, 2021, 30(2): 028301.
[12] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[13] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[14] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[15] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
No Suggested Reading articles found!