Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 010503    DOI: 10.1088/1674-1056/abc2b7
GENERAL Prev   Next  

Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica

Hanqi Gong(龚菡琪)1,2,†, Chonghai Qi(齐崇海)1,3,†, Junwei Yang(杨俊伟)4, Jige Chen(陈济舸)1,5, Xiaoling Lei(雷晓玲)6,‡, Liang Zhao(赵亮)7,§, and Chunlei Wang(王春雷)1,5,
1 Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Physics, Shandong University, Jinan 250100, China; 4 School of Arts and Sciences, Shanghai Dianji University, Shanghai 201306, China; 5 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; 6 Department of Physics, East China University of Science and Technology, Shanghai 200237, China; 7 College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, China
Abstract  Using molecular dynamics simulations, we have revealed a novel wetting phenomenon with a droplet on composite structures formed by embedded water into (111) surface of β-cristobalite hydroxylated silica. This can be attributed to the formation of a composite structure composed of embedded water molecules and the surface hydroxyl (-OH) groups, which reduces the number of hydrogen bonds between the composite structure and the water droplet above the composite structure. Interestingly, a small uniform strain ( 3%) applied to the crystal lattice of the hydroxylated silica surface can result in a notable change of the contact angles (>40°) on the surface. The finding provides new insights into the correlation between the molecular-scale interfacial water structures and the macroscopic wettability of the hydroxylated silica surface.
Keywords:  lattice strain      surface wettability      embedded water      hydrogen bonds  
Received:  27 August 2020      Revised:  29 September 2020      Accepted manuscript online:  20 October 2020
PACS:  05.20.-y (Classical statistical mechanics)  
  05.70.Np (Interface and surface thermodynamics)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11674345), the Key Research Program of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH019), and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  These authors contributed equally to this work. Corresponding author. E-mail: leixiaoling@ecust.edu.cn §Corresponding author. E-mail: zhaoliang@yzu.edu.cn Corresponding author. E-mail: wangchunlei@zjlab.org.cn   

Cite this article: 

Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷) Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica 2021 Chin. Phys. B 30 010503

1 Yoon S S, Lee Y B and Khang D Y 2016 Appl. Surf. Sci. 370 117
2 Aslam M 2013 J. Phys. Conf. Ser. 439 012029
3 Kobayashi M, Susuki K, Otani T, Enomoto S, Otsuji H, Kuroda Y, Wada H, Shimojima A, Homma T and Kuroda K 2017 Nanoscale 9 8321
4 Yu E, Kim S C, Lee H J, Oh K H and Moon M W 2015 Sci. Rep. 5 9362
5 Innocenzi P and Malfatti L 2013 Chem. Soc. Rev. 42 4198
6 Zaera F 2012 Chem. Rev. 112 2920
7 Liu X, Zhang F, Jing X, Pan M, Liu P, Li W, Zhu B, Li J, Chen H, Wang L, Lin J, Liu Y, Zhao D, Yan H and Fan C 2018 Nature 559 593
8 Underwood T, Erastova V and Greenwell H C 2016 J. Phys. Chem. C 120 11433
9 Fang W, Liu L and Guo G 2017 Chem. Eur. J. 23 11253
10 Jurak M and Chibowski E 2007 Langmuir 23 10156
11 Gök M, Sert \cS, özevci G and Eral M 2018 Nucl. Sci. Tech. 29 95
12 Conradi M, Kocijan A, Zorko M and Jerman I 2012 Prog. Org. Coat. 75 392
13 Pawar P G, Xing R, Kambale R C, Kumar A M, Liu S and Latthe S S 2017 Prog. Org. Coat. 105 235
14 Mohammed S D, Majeed W Z, Naji N B and Fawzi N M 2017 Nucl. Sci. Tech. 28 153
15 Giri S, Trewyn B G, Stellmaker M P and Lin V S Y 2005 Angew. Chem. 44 5038
16 Tan A, Simovic S, Davey A K, Rades T, Boyd B J and Prestidge C A 2010 Mol. Pharmaceut. 7 522
17 Wang S, Segin N, Wang K, Masliyah J H and Xu Z 2011 J. Phys. Chem. C 115 10576
18 Dufficy M K, Geiger M T, Bonino C A and Khan S A 2015 Langmuir 31 12455
19 Zefirov V V, Sizov V E, Kondratenko M S, Elmanovich I V, Abramchuk S S, Sergeyev V G and Gallyamov M O 2019 J. Supercrit. Fluids 150 56
20 Wongchitphimon S, Rongwong W, Chuah C Y, Wang R and Bae T 2017 J. Membr. Sci. 540 146
21 Zhang S C, Ning S Y, Zhou J, Wang S Y, Zhang W, Wang X P and Wei Y Z 2020 Nucl. Sci. Tech. 31 34
22 Fu L, Li S, Han Z, Liu H and Yang H 2014 Chem. Commun. 50 10045
23 Sahu A K, Selvarani G, Pitchumani S, Sridhar P and Shukla A K 2007 J. Appl. Electrochem. 37 913
24 Chi Y S, Lee J K, Lee S and Choi I S 2004 Langmuir 20 3024
25 Debenedetti P G, Sciortino F and Zerze G H2020 Science 369 289
26 Gallo P, Amann-Winkel K, Angell C A, Anisimov M A, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos A Z, Russo J, Sellberg J A, Stanley H E, Tanaka H, Vega C, Xu L and Pettersson L G 2016 Chem. Rev. 116 7463
27 Conde M M, Gonzalez M A, Abascal J L and Vega C 2013 J. Chem. Phys. 139 154505
28 Feng Y, Chen J, Li X Z and Wang E 2016 Chin. Phys. B 25 013104
29 Sun C Q 2020 Chin. Phys. B 29 088203
30 Huang K, Rowe P, Chi C, Sreepal V, Bohn T, Zhou K G, Su Y, Prestat E, Pillai P B, Cherian C T, Michaelides A and Nair R R 2020 Nat. Commun. 11 1097
31 Qi C, Lei X, Zhou B, Wang C and Zheng Y 2019 J. Chem. Phys. 150 234703
32 Milischuk A A and Ladanyi B M 2011 J. Chem. Phys. 135 174709
33 Cox S J, Kathmann S M, Slater B and Michaelides A 2015 J. Chem. Phys. 142 184704
34 Yin Y, Wang J, Wang X, Li S, Jorgensen M R, Ren J, Meng S, Ma L and Schmidt O G 2019 Sci. Adv. 5 eaax6973
35 Kanduc M and Netz R R 2015 Proc. Natl. Acad. Sci. USA 112 12338
36 Shao M Z, Wang Y T and Zhou X 2020 Chin. Phys. B 29 080505
37 Du Q, Freysz E and Shen Y R 1994 Phys. Rev. Lett. 72 238
38 Yang J J, Meng S, Xu L F and Wang E G 2005 Phys. Rev. B 71 035413
39 Yang J, Meng S, Xu L F and Wang E G 2004 Phys. Rev. Lett. 92 146102
40 Phan A, Ho T A, Cole D R and Striolo A 2012 J. Phys. Chem. C 116 15962
41 Wang C, Lu H, Wang Z, Xiu P, Zhou B, Zuo G, Wan R, Hu J and Fang H 2009 Phys. Rev. Lett. 103 137801
42 Cyran J D, Donovan M A, Vollmer D, Siro B F, Pezzotti S, Galimberti D R, Gaigeot M P, Bonn M and Backus E H G 2019 Proc. Natl. Acad. Sci. USA 116 1520
43 Guo W and Errington J R 2019 J. Phys. Chem. C 123 19649
44 Wang C, Qi C, Tu Y, Nie X and Liang S 2019 Phys. Rev. Mater. 3 065602
45 Guo P, Tu Y S, Yang J R, Wang C L, Sheng N and Fang H P 2015 Phys. Rev. Lett. 115 186101
46 Chen Y W and Cheng H P 2011 J. Chem. Phys. 134 114703
47 Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X Z, Francisco J S, Zeng X C, Xu L M, Wang E G and Jiang Y 2020 Nature 577 60
48 Schrader A M, Monroe J I, Sheil R, Dobbs H A, Keller T J, Li Y, Jain S, Shell M S, Israelachvili J N and Han S 2018 Proc. Natl. Acad. Sci. USA 115 2890
49 Ou X, Lin Z and Li J 2018 Chem. Commun. (Camb) 54 5418
50 Yu X M, Qi C H and Wang C L 2018 Chin. Phys. B 27 060101
51 Smith A M, Mohs A M and Nie S 2009 Nat. Nanotechnol. 4 56
52 Giri G, Verploegen E, Mannsfeld S C B, Atahan-Evrenk S, Kim D H, Lee S Y, Becerril H A, Aspuru-Guzik A, Toney M F and Bao Z 2011 Nature 480 504
53 Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney M F and Nilsson A 2010 Nat. Chem. 2 454
54 Thirumalai D, Reddy G and Straub J E 2012 Acc. Chem. Res. 45 83
55 Liu X, Hong C, Ding Y, Liu X, Yao J and Dai S 2019 Chin. Phys. B 28 014703
56 Ho T A, Argyris D, Papavassiliou D V, Striolo A, Lee L L and Cole D R J M S 2011 Mol. Simulat. 37 172
57 Giovambattista N, Debenedetti P G and Rossky P J 2009 Proc. Natl. Acad. Sci. USA 106 15181
58 Romero-Vargas C S, Giovambattista N, Aksay I A and Debenedetti P G 2011 J. Phys. Chem. C 115 4624
59 Nie X, Zhou B, Wang C, Fang H J N S and T 2018 Nucl. Sci. Tech. 29 18
60 Wang C, Zhou B, Xiu P and Fang H 2011 J. Phys. Chem. C 115 3018
61 Limmer D T, Willard A P, Madden P and Chandler D 2013 Proc. Natl. Acad. Sci. USA 110 4200
62 Xu Z, Gao Y, Wang C and Fang H 2015 J. Phys. Chem. C 119 20409
63 Rotenberg B, Patel A J and Chandler D 2011 J. Am. Chem. Soc. 133 20521
64 Wang Y, Duan Z and Fan D 2013 Sci. Rep. 3 3505
65 Maier S, Stass I, Cerda J I and Salmeron M 2014 Phys. Rev. Lett. 112 126101
66 Björneholm O, Hansen M H, Hodgson A, Liu L M, Limmer D T, Michaelides A, Pedevilla P, Rossmeisl J, Shen H, Tocci G, Tyrode E, Walz M M, Werner J and Bluhm H 2016 Chem. Rev. 116 7698
[1] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[2] Role of hydrogen bonding in solubility of poly(N-isopropylacrylamide) brushes in sodium halide solutions
Xin-Jun Zhao(赵新军), Zhi-Fu Gao(高志福). Chin. Phys. B, 2016, 25(7): 074703.
[3] Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds
Yexin Feng(冯页新), Ji Chen(陈基), Xin-Zheng Li(李新征), Enge Wang(王恩哥). Chin. Phys. B, 2016, 25(1): 013104.
[4] Long-distance super-exchange and quantum magnetic relaxation in a hybrid metal-organic framework
Ying Tian(田英), Shipeng Shen(申世鹏), Junzhuang Cong(丛君状), Liqin Yan(闫丽琴), Yisheng Chai(柴一晟), Young Sun(孙阳). Chin. Phys. B, 2016, 25(1): 017601.
[5] Dynamic surface wettability of three-dimensional graphene foam
Huang Wen-Bin, Wang Guang-Long, Gao Feng-Qi, Qiao Zhong-Tao, Wang Gang, Chen Min-Jiang, Tao Li, Deng Ya, Sun Lian-Feng. Chin. Phys. B, 2014, 23(4): 046802.
[6] Density functional study of uranyl (VI) amidoxime complexes
Chi Fang-Ting, Li Peng, Xiong Jie, Hu Sheng, Gao Tao, Xia Xiu-Long, Wang Xiao-Lin. Chin. Phys. B, 2012, 21(9): 093102.
[7] Static strength of gold compressed up to 127 GPa
Jing Qiu-Min, Wu Qiang, Liu Lei, Bi Yan, Zhang Yi, Liu Sheng-Gang, Xu Ji-An. Chin. Phys. B, 2012, 21(10): 106201.
[8] ADSORPTION BEHAVIOR OF AMINO ACIDS ON COPPER SURFACES
Zhao Xue-ying, Wang Hao, Yan Hao, Gai Zheng, Zhao Ru-guang, Yang Wei-sheng. Chin. Phys. B, 2001, 10(13): 84-95.
No Suggested Reading articles found!