Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 093102    DOI: 10.1088/1674-1056/21/9/093102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Density functional study of uranyl (VI) amidoxime complexes

Chi Fang-Ting (匙芳廷)a b, Li Peng (李鹏)c, Xiong Jie (熊洁)a, Hu Sheng (胡胜)a, Gao Tao (高涛)c, Xia Xiu-Long (夏修龙)a, Wang Xiao-Lin (汪小琳)a b
a Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China;
b College of Chemistry, Sichuan University, Chengdu 610064, China;
c Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  Uranyl (VI) amidoxime complexes are investigated using relativistic density functional theory. The equilibrium structures, bond orders, and Mulliken populations of the complexes have been systematically investigated under a generalized gradient approximation (GGA). Comparison of (acet) uranyl amidoxime complexes ([UO2(AO)n]2-n, 1 ≤ n ≤ 4) with available experimental data shows an excellent agreement. In addition, the U-O(1), U-O(3), C(1)-N(2), and C(3)-N(4) bond lengths of [UO2(CH3AO)4]2- are longer than experimental data by about 0.088, 0.05, 0.1, and 0.056 Å. The angles of N(3)-O(3)-U, O(2)-N(1)-C(1), N(3)-C(3)-N(4), N(4)-C(3)-C(4), and C(4)-C(3)-N(3) are different from each other, which are due to existing interaction between oxygen in uranyl and hydrogen in amino group. This interaction is found to be intra-molecular hydrogen bond. Studies on the bond orders, Mulliken charges, and Mulliken populations demonstrate that uranyl oxo group functions as hydrogen-bond acceptors and H atoms in ligands act as hydrogen-bond donors forming hydrogen bands within the complex.
Keywords:  uranyl amidoxime complexes      intra-molecular hydrogen bonds      bond order      Mulliken populations  
Received:  12 December 2011      Revised:  26 April 2012      Accepted manuscript online: 
PACS:  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
Fund: Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2011A0301003).
Corresponding Authors:  Wang Xiao-Lin     E-mail:  xlwang@caep.ac.cn

Cite this article: 

Chi Fang-Ting (匙芳廷), Li Peng (李鹏), Xiong Jie (熊洁), Hu Sheng (胡胜), Gao Tao (高涛), Xia Xiu-Long (夏修龙), Wang Xiao-Lin (汪小琳) Density functional study of uranyl (VI) amidoxime complexes 2012 Chin. Phys. B 21 093102

[1] Sather A C, Berryman O B and Rebek J Jr 2010 J. Am. Chem. Soc. 132 13572
[2] Davies R V, Kennedy J and Mcllroy R W 1964 Nature 203 1110
[3] Egawa H, Nakayama M, Nonaaka T, Yamamoto H and Uemura K 1987 J. Appl. Polym. Sci. 34 1557
[4] Egawa H, Kabay N, Shuto T and Jyo A 1992 J. Appl. Polym. Sci. 46 129
[5] Egawa H, Nonaka T, Abe S and Nakayama M 1992 J. Appl. Polym. Sci. 45 837
[6] Kumar V, Bhardwaj Y K, Dubey K A, Chaudhari C V, Goel N K, Biswal J, Sabharwal S and Tirumalesh K 2006 Sep. Sci. Technol. 41 3123
[7] Zhang A, Uchiyama G and Asakura T 2005 React. Funct. Polym. 63 143
[8] Badawy S M, Sokker H H and Dessouki A M 2006 J. Appl. Poly. Sci. 99 1180
[9] Choi S H and Nho Y C 2000 Radiat. Phys. Chem. 57 187
[10] Liu S P, Gong J, Hao F H and Hu G C 2008 Chin. Phys. B 17 1674
[11] Xu H B, Peng X K and Chen C B 2010 Chin. Phys. B 19 062901
[12] Bühl M, Kabrede H, Diss R and Wipff G 2005 J. Am. Chem. Soc. 127 13506
[13] Jia T T, Gao T, Zhang Y G, Lei Q H and Luo D L 2011 Chin. Phys. B 20 113601
[14] Garcia-Hernández M, Willnauer C, Krüger S, Moskaleva L V and Rösch N 2006 Inorg. Chem. 45 1356
[15] Tian X F, Long C S, Zhu Z H and Gao T 2010 Chin. Phys. B 19 057102
[16] Zhang Y G and Li Y D 2010 Chin. Phys. B 19 033302
[17] Stipdonk M J V, Chien W, Bulleigh K, Wu Q and Groenewold G S 2006 J. Phys. Chem. A 110 959
[18] Hagberg D, Karlström G, Roos B O and Gagliardi L 2005 J. Am. Chem. Soc. 127 14250
[19] Groenewold G S, Gianotto A K and Cossel K C 2006 J. Am. Chem. Soc. 128 4802
[20] Vallet V, Wahlgren U, Schimmelpfennig B, Szabó Z and Grenthe I 2001 J. Am. Chem. Soc. 123 11999
[21] Weck P F, Kim E, Masci B, Thuéry P and Czerwinski K R 2010 Inorg. Chem. 49 1465
[22] Watson L A and Hay B P 2011 Inorg. Chem. 50 2599
[23] Pan Q J and Schreckenbach G 2010 Inorg. Chem. 49 6509
[24] Shamov G A and Schreckenbach G 2006 J. Phys. Chem. A 110 9486
[25] Schreckenbach G and Shamov G A 2010 Acc. Chem. Res. 43 19
[26] te Velde G, Bickelhaupt F M, Baerends E J, Guerra C F, van Gisbergen S J A, Snijders J G and Ziegler T J 2001 Comput. Chem. 22 931
[27] Fonseca G C, Snijders J G, te Velde G and Baerends E J 1998 Theor. Chem. Acc. 99 91
[28] van Lenthe E, Baerends E J and Snijders J G 1993 J. Chem. Phys. 99 4597
[29] Clavaguera-Sarrio C, Hoyau S, Ismail N and Marsden C J 2003 J. Phys. Chem. A 107 4515
[30] Hagberg D, Karlstrom G, Roos B O and Gagliardi L 2005 J. Am. Chem. Soc. 127 14250
[31] Rodgers M T and Armentrout P B 2000 Mass Spectrom. Rev. 19 215
[32] van Horn J D and Huang H 2006 Coord. Chem. Rev. 250 765
[33] Antonisse M M G and Reinhoudt D N 1998 Chem. Commun. 4 443
[34] Dai S, Shin Y S, Barnes C E and Toth L M 1997 Chem. Mater. 9 2521
[35] Witte E G, Schwochau K S, Henkel G and Krebs B 1984 Inorg. Chim. Acta 94 323
[36] Shamov G A and Schreckenbach G 2005 J. Phys. Chem. A 109 10961
[37] Chio S H and Nho Y C 2000 Radiat. Phys. Chem. 57 187
[38] Das S, Pandey A K, Athawale A A and Manchanda V K 2009 J. Phys. Chem. B 113 6328
[39] Kavaklimath P A and Güven O 2004 J. Appl. Polym. Sci. 93 1705
[40] Lyon J T, Hu H S, Andrews L and Li J 2007 PNAS 104 8919
[41] Sarrio C C, Hoyau S, Ismaail N and Marsden C J 2003 J. Phys. Chem. A 107 4515
[42] Franczyk T S, Czerwinski K R and Raymond K N 1992 J. Am. Chem. Soc. 114 8138
[1] Chemical bonding in representative astrophysically relevant neutral, cation, and anion HCnH chains
Ioan Baldea. Chin. Phys. B, 2022, 31(12): 123101.
[2] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[3] Density function theoretical study on the complex involved in Th atom-activated C-C bond in C2H6
Qing-Qing Wang(王青青), Peng Li(李鹏), Tao Gao(高涛), Hong-Yan Wang(王红艳), Bing-Yun Ao(敖冰云). Chin. Phys. B, 2016, 25(6): 063102.
No Suggested Reading articles found!