Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 106201    DOI: 10.1088/1674-1056/21/10/106201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Static strength of gold compressed up to 127 GPa

Jing Qiu-Min (敬秋民), Wu Qiang (吴强), Liu Lei (柳雷), Bi Yan (毕延), Zhang Yi (张毅), Liu Sheng-Gang (刘盛刚), Xu Ji-An (徐济安)
Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  Gold powder is compressed non-hydrostatically up to 127 GPa in a diamond anvil cell (DAC), and its angle dispersive X-ray diffraction patterns are recorded. The compressive strength of gold is investigated in a framework of the lattice strain theory by the line shift analysis. The result shows that the compressive strength of gold increases continuously with the pressure up to 106 GPa and reaches 2.8 GPa at the highest experimental pressure (127 GPa) achieved in our study. This result is in good agreement with our previous experimental result in a relevant pressure range. The compressive strength of gold may be the major source of the error in the equation-of-state measurement in various pressure environments.
Keywords:  compressive strength      gold      diamond anvil cell      lattice strain theory  
Received:  12 March 2012      Revised:  25 April 2012      Accepted manuscript online: 
PACS:  62.20.fg (Shape-memory effect; yield stress; superelasticity)  
  62.50.-p (High-pressure effects in solids and liquids)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: Project supported by the Defense Industrial Technology Development Program (Grant No. B1520110001) and the Fund of Key Laboratory of Shock Wave and Detonation Physics of China (Grant No. 9140C6703031002).
Corresponding Authors:  Jing Qiu-Min     E-mail:  j_qm@163.com

Cite this article: 

Jing Qiu-Min (敬秋民), Wu Qiang (吴强), Liu Lei (柳雷), Bi Yan (毕延), Zhang Yi (张毅), Liu Sheng-Gang (刘盛刚), Xu Ji-An (徐济安) Static strength of gold compressed up to 127 GPa 2012 Chin. Phys. B 21 106201

[1] Miletich R, Allan D R and Kuhs W F 2000 Rev. Mineral. Geochem. 41 447
[2] Wang J H and He D W 2008 Acta Phys. Sin. 57 3397 (in Chinese)
[3] Sung C M Goetze C and Mao H K 1977 Rev. Sci. Instrum. 48 1386
[4] Meade C and Jeanloz R 1990 Phys. Rev. B 42 2532
[5] Singh A K and Kennedy G C 1974 J. Appl. Phys. 45 4686
[6] Kinsland G L and Bassett W A 1977 J. Appl. Phys. 48 978
[7] Duffy T S, Mao H K and Hemley R J 1995 Phys. Rev. Lett. 74 1371
[8] Conil N and Kavner A 2006 J. Phys.: Condens. Matter 18 S1039
[9] Weir S T, Akella J, Ruddle C, Goodwin T and Hsiung L 1998 Phys. Rev. B 58 11258
[10] Jing Q M, Bi Y, Wu Q, Jing F Q, Wang Z G, Xu J A and Jiang S 2007 Rev. Sci. Instrum. 78 073906
[11] Kavner A and Duffy T S 2003 Phys. Rev. B 68 144101
[12] Singh A K, Liermann H P, Akahama Y, Saxena S K and Menendez-Proupin E 2008 J. Appl. Phys. 103 063524
[13] Meng Y, Weidner D J and Fei Y 1993 Geophys. Res. Lett. 20 1147
[14] Duffy T S, Shen G Y, Heinz D L, Shu J F, Ma Y Z, Mao H K, Hemley R J and Singh A K 1999 Phys. Rev. B 60 15063
[15] Duffy T S, Shen G Y, Shu J F, Mao H K, Hemley R J and Singh A K 1999 J. Appl. Phys. 86 4729
[16] Singh A K, Liermann H P, Saxena S K, Mao H K and Usha Devi1 S 2006 J. Phys.: Condens. Matter 18 S969
[17] Wang J H, He D W and Duffy T S 2010 J. Appl. Phys. 108 063521
[18] Akahama Y and Kawamura H 2002 J. Appl. Phys. 92 5892
[19] Dewaele A, Loubeyre P and Mezouar M 2004 Phys. Rev. B 70 094112
[20] Anderson O L, Isaak D G and Yamamoto S 1989 J. Appl. Phys. 65 1534
[21] Ruoff A L 1975 J. Appl. Phys. 46 1389
[22] Singh A K 1993 J. Appl. Phys. 73 4278
[23] Singh A K, Balasingh C, Mao H K, Hemley R J and Shu J 1998 J. Appl. Phys. 83 7567
[24] Singh A K and Takemura K 2001 J. Appl. Phys. 90 3269
[25] Reuss A and Angew Z 1929 Math. Mech. 9 49
[26] Voigt W 1910 Lehrbuch der Kristalphysik (Berlin: Teubner) p. 962
[27] Shieh S R and Duffy T S 2002 Phys. Rev. Lett. 89 255507
[28] Merkel S, Wenk R H, Shu J, Shen G, Gillet P, Mao H K and Hemley R J 2002 J. Geophys. Res. 107 B11 2271
[29] Biswas S N, Klooster P Van't and Trappeniers N J 1981 Physica B 103 235
[30] Dewaele A and Loubeyre P 2005 Phys. Rev. B 72 134106
[31] Bridgman P W 1953 J. Appl. Phys. 24 560
[32] Hu J B, Tan H, Yu Y Y, Dai C D and Ran X W 2008 Chin. Phys. B 17 405
[1] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[2] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[3] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[4] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[5] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[6] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[7] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[8] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[9] A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), Hua Yang(杨华), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024207.
[10] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[11] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
[12] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[13] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[14] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[15] Nearly golden-ratio order in Ta metallic glass
Yuan-Qi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2020, 29(4): 046105.
No Suggested Reading articles found!