Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 116102    DOI: 10.1088/1674-1056/aba60e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology

Mohd. Shkir1, †, Ziaul Raza Khan2, T Alshahrani3, Kamlesh V. Chandekar4, M Aslam Manthrammel1, Ashwani Kumar5, and S AlFaify1$
1 Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
2 Department of Physics, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
3 Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
4 Department of Physics, Rayat Shikshan Sanstha’s, Karmaveer Bhaurao Patil College, Vashi, Navi Mumbai 400703, India
5 Department of Physics, IK Gujral Punjab Technical University, Jalandhar 144603, India
Abstract  

This work reports the cost-effective growth of Mg:PbI2 nanostructures with 0, 1, 2.5 and 5.0 wt.% Mg doping concentrations. Structural, vibrational, morphological properties are analyzed using x-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). XRD and Raman studies confirm the monophasic hexagonal system of Mg:PbI2, and no additional impurity peaks are detected. The Scherrer formula is used to determine sizes of crystallites to be in the range of 47–52 nm. EDX/SEM e-mapping analyses confirm the incorporation of Mg in PbI2 matrix and its uniform distribution throughout the sample. The hexagonal nanosheet- and nanoplate-like morphologies are detected in SEM images for pure and Mg-doped PbI2. An optical band gap of nanostructures is obtained from Tauc’s relation to be in the range 3.0–3.25 eV. Dielectric and electrical properties are found in significant enhancement as Mg doping in PbI2 matrix, also the conduction mechanism is discussed.

Keywords:  Mg:PbI2 nanostructures      structural properties      optical band gap      dielectric constant      ac conductivity  
Received:  23 May 2020      Revised:  07 July 2020      Accepted manuscript online:  15 July 2020
Fund: the Deanship of Scientific Research at King Khalid University (Grant No. R.G.P1/207/41), the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program, and Deanship of Research, University of Hail.
Corresponding Authors:  Corresponding author. E-mail: shkirphysics@gmail.com   

Cite this article: 

Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$ Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology 2020 Chin. Phys. B 29 116102

Fig. 1.  

(a) As-recorded XRD patterns, (b) close view of the (001) peak, (c)–(f) Rietveld refined XRD patterns for pure and Mg-doped PbI2 nanostructures.

Sample POWDERX software Rietveld refined D101/nm δ101/10−4 nm−2 ε101/10−3
Pb1–xMgxI2 a c V3 a c V3
JCPSD#7-0235 4.5570 6.9790 125.5100
x = 0.0 wt.% 4.5572 6.9786 125.5160 4.5556 6.9767 125.3918 51.23 3.81 3.02
x = 1.0 wt.% 4.5577 6.9778 125.5310 4.5578 6.9812 125.5946 49.25 4.12 3.15
x = 2.5 wt.% 4.5574 6.9803 125.5605 4.5550 6.9769 125.3650 48.20 4.30 3.21
x = 5.0 wt.% 4.5590 6.9822 125.6817 4.5553 6.9782 125.4019 47.47 4.44 3.27
Table 1.  

Refined structural constraints for all Mg:PbI2 by POWDERX software and Rietveld refinement processes.

Fig. 2.  

FT-Raman spectra for pure and Mg-doped PbI2.

Fig. 3.  

EDX spectra with composition and (b) SEM e-mapping images for 2.5 wt.% Mg:PbI2.

Fig. 4.  

SEM micrographs for pure and Mg-doped PbI2.

Fig. 5.  

(a) Absorbance plot and (b) Tauc’s plot for Mg:PbI2.

Fig. 6.  

Graphics for (a) ε′ vs ln ω, (b) ε″ vs ln ω, and (c) ωac vs ln ω for all Mg:PbI2 samples.

[1]
Kojima A Teshima K Shirai Y Miyasaka T 2009 J. Am. Chem. Soc. 131 6050 DOI: 10.1021/ja809598r
[2]
Jiang Q Zhao Y Zhang X Yang X Chen Y Chu Z Ye Q Li X Yin Z You J 2019 Nat. Photon. 13 460 DOI: 10.1038/s41566-019-0398-2
[3]
Sun H Zhao B Zhu X Zhu S Yang D Wangyang P Gao X 2018 Appl. Surf. Sci. 427 1146 DOI: 10.1016/j.apsusc.2017.08.144
[4]
Shah K Street R Dmitriyev Y Bennett P Cirignano L Klugerman M Squillante M Entine G 2001 Nucl. Instrum. Methods A 458 140 DOI: 10.1016/S0168-9002(00)00857-3
[5]
Mo J Zhang C Chang J Yang H Xi H Chen D Lin Z Lu G Zhang J Hao Y 2017 J. Mater. Chem. A 5 13032 DOI: 10.1039/C7TA01517H
[6]
Leal D A A Krishnan B Shaji S Avellaneda D A 2018 Mater. Chem. Phys. 215 137 DOI: 10.1016/j.matchemphys.2018.05.033
[7]
Zhang J Huang Y Tan Z Li T Zhang Y Jia K Lin L Sun L Chen X Li Z Tan C Zhang J Zheng L Wu Y Deng B Chen Z Liu Z Peng H 2018 Adv. Mater. 30 1803194 DOI: 10.1002/adma.201803194
[8]
Shah K S Olschner F Moy L P Bennett P Misra M Zhang J Squillante M R Lund J C 1996 Nucl. Instrum. Methods A 380 266 DOI: 10.1016/S0168-9002(96)00346-4
[9]
Al-Daraghmeh T M Saleh M H Ahmad M J A Bulos B N Shehadeh K M Jafar M M A G 2018 J. Electron. Mater. 47 1806 DOI: 10.1007/s11664-017-5953-3
[10]
Shkir M Abbas H Khan Z R 2012 J. Phys. Chem. Solids 73 1309 DOI: 10.1016/j.jpcs.2012.04.019
[11]
Ferreira da Silva A Veissid N An C Pepe I Barros de Oliveira N Batista da Silva A 1996 Appl. Phys. Lett. 69 1930 DOI: 10.1063/1.117625
[12]
Zhong M Zhang S Huang L You J Wei Z Liu X Li J 2017 Nanoscale 9 3736 DOI: 10.1039/C6NR07924E
[13]
Qi Z Yang T Li D Li H Wang X Zhang X Li F Zheng W Fan P Zhuang X Pan A 2019 Mater. Horizns 6 1474 DOI: 10.1039/C9MH00335E
[14]
Ismail R A Mousa A M Shaker S S 2019 Opt. Quantum Electron. 51 362 DOI: 10.1007/s11082-019-2063-x
[15]
Chen Y Zhang L Zhang Y Gao H Yan H 2018 RSC Adv. 8 10489 DOI: 10.1039/C8RA00384J
[16]
Gujar T P Unger T Schönleber A Fried M Panzer F van Smaalen S Köhler A Thelakkat M 2018 Phys. Chem. Chem. Phys. 20 605 DOI: 10.1039/C7CP04749E
[17]
Kim H S Lee C R Im J H Lee K B Moehl T Marchioro A Moon S J Humphry-Baker R Yum J H Moser J E 2012 Sci. Rep. 2 591 DOI: 10.1038/srep00591
[18]
Xiao M Huang F Huang W Dkhissi Y Zhu Y Etheridge J Gray-Weale A Bach U Cheng Y B Spiccia L 2014 Angew. Chem. Int. Ed. 53 9898 DOI: 10.1002/anie.201405334
[19]
Duong T Mulmudi H K Shen H Wu Y Barugkin C Mayon Y O Nguyen H T Macdonald D Peng J Lockrey M 2016 Nano Energy 30 330 DOI: 10.1016/j.nanoen.2016.10.027
[20]
Mohammed S I Shanshool H M Imhan K I 2019 J. Theor. Appl. Phys. 13 269 DOI: 10.1007/s40094-019-00344-6
[21]
Khan M T Shkir M Almohammedi A AlFaify S 2019 Solid State Sci. 90 95 DOI: 10.1016/j.solidstatesciences.2019.02.010
[22]
AlFaify S Shkir M Ganesh V 2018 Mater. Sci. Semicond. Process. 83 231 DOI: 10.1016/j.mssp.2018.04.040
[23]
Shkir M AlFaify S 2017 Sci. Rep. 7 16091 DOI: 10.1038/s41598-017-16086-x
[24]
Shkir M Yahia I S Ganesh V Bitla Y Ashraf I M Kaushik A AlFaify S 2018 Sci. Rep. 8 13806 DOI: 10.1038/s41598-018-32038-5
[25]
Abutalib M Yahia I 2017 J. Mol. Struct. 1138 215 DOI: 10.1016/j.molstruc.2017.03.016
[26]
Al-Douri Y Hashim U Bouhemadou A Ameri M 2015 Nanoelectron. Optoelectron. 10 705 DOI: 10.1166/jno.2015.1811
[27]
Mohammed S I Al-Douri Y 2014 Advanced Materials Research Durnten-Zurich Trans Tech Publications Ltd 925 164 168 DOI: 10.4028/www.scientific.net/AMR.925.164
[28]
Shkir M AlFaify S Yahia I S Hamdy M S Ganesh V Algarni H 2017 J. Nanopart. Res. 19 328 DOI: 10.1007/s11051-017-4020-6
[29]
Barnakov Y A Ito S Dmitruk I Tsunekawa S Kasuya A 2001 Scr. Mater. 45 273 DOI: 10.1016/S1359-6462(01)01021-1
[30]
Finlayson C Sazio P 2006 J. Phys. D: Appl. Phys. 39 1477 DOI: 10.1088/0022-3727/39/8/003
[31]
Zhu G Liu P Hojamberdiev M Zhou J-p Huang X Feng B Yang R 2010 Appl. Phys. A 98 299 DOI: 10.1007/s00339-009-5412-y
[32]
Ma D Zhang W Zhang R Zhang M Xi G Qian Y 2005 Nanosci. Nanotechnol. 5 810
[33]
Mu R Tung Y Ueda A Henderson D 1996 J. Phys. Chem. A 100 19927 DOI: 10.1021/jp960605a
[34]
Tang Z K Nozue Y Goto T 1995 Mater. Sci. Eng. B 35 410 DOI: 10.1016/0921-5107(95)01394-6
[35]
Khan Z R Shkir M Khan A Mariappan S M Balaji M Sheikh M R AlFaify S 2020 Solid State Sci. 103 106192 DOI: 10.1016/j.solidstatesciences.2020.106192
[36]
Shkir M Khan M T AlFaify S 2019 Appl. Nanosci. 9 1417 DOI: 10.1007/s13204-019-00983-w
[37]
Shkir M AlFaify S 2019 J. Mater. Res. 34 2765 DOI: 10.1557/jmr.2019.121
[38]
Silva Filho J M C d Borrero N F V Viana G A Merlo R B Marques F C 2020 Cryst. Growth 20 1531 DOI: 10.1021/acs.cgd.9b01250
[39]
Yahia I S Shkir M Ganesh V Abutalib M M Zahran H Y Alfaify S 2018 Mater. Sci.-Poland 36 320 DOI: 10.2478/msp-2018-0050
[40]
Khan Z R Zulfequar M Khan M S 2010 Mater. Sci. Eng. B 174 145 DOI: 10.1016/j.mseb.2010.03.006
[41]
Shkir M Khan A Hamdy M AlFaify S 2020 Mater. Res. Express 6 1250e6 DOI: 10.1088/2053-1591/ab65e3
[42]
Shkir M Chandekar K V Khan A El-Toni A M AlFaify S 2020 Mater. Sci. Semicond. Process. 107 104807 DOI: 10.1016/j.mssp.2019.104807
[43]
Khilji M Sherman W Wilkinson G 1982 J. Raman Spectrosc. 13 127 DOI: 10.1002/jrs.1250130206
[44]
Wangyang P Sun H Zhu X Yang D Gao X 2016 Mater. Lett. 168 68 DOI: 10.1016/j.matlet.2016.01.034
[45]
AlFaify S Shkir M 2019 Opt. Mater. 88 417 DOI: 10.1016/j.optmat.2018.11.054
[46]
Khan Z R Aziz A Khan M S 2018 Mater. Sci.-Poland 36 235 DOI: 10.1515/msp-2018-0028
[47]
Khodja S Touam T Chelouche A Boudjouan F Djouadi D Hadjoub Z Fischer A Boudrioua A 2014 Superlattice Microst. 75 485 DOI: 10.1016/j.spmi.2014.08.010
[48]
Alfaify S Shkir M 2019 J. Nanoelectron. Optoelectron. 14 255 DOI: 10.1166/jno.2019.2487
[49]
Wang Y Sun Y Y Zhang S Lu T M Shi J 2016 Appl. Phys. Lett. 108 013105 DOI: 10.1063/1.4939269
[50]
Khan M T Shkir M Yahia I S Almohammedi A AlFaify S 2020 Superlattice Microst. 138 106370 DOI: 10.1016/j.spmi.2019.106370
[51]
Quan Z Liu X Qi Y Song Z Qi S Zhou G Xu X 2017 Appl. Surf. Sci. 399 751 DOI: 10.1016/j.apsusc.2016.12.143
[52]
Jule L T Dejene F B Ali A G Roro K T Hegazy A Allam N K El Shenawy E 2016 J. Alloys Compd. 687 920 DOI: 10.1016/j.jallcom.2016.06.176
[53]
Shkir M Khan A El-Toni A M Aldalbahi A Yahia I S AlFaify S 2019 J. Phys. Chem. Solids 130 189 DOI: 10.1016/j.jpcs.2019.02.030
[54]
Slonopas A Ryan H Norris P 2019 Electrochim. Acta 307 334 DOI: 10.1016/j.electacta.2019.03.221
[55]
Khan Z R Zulfequar M Khan M S 2011 J. Mater. Sci. 46 5412 DOI: 10.1007/s10853-011-5481-0
[56]
Kumar R Engles D 2016 Mater. Today 3 1933 DOI: 10.1016/j.matpr.2016.04.094
[57]
Takeya J Yamagishi M Tominari Y Nakazawa Y 2007 Solid State Electron. 51 1338 DOI: 10.1016/j.sse.2007.06.023
[58]
Glasser L Hall P Liebenberg D 1967 J. Chem. Soc. A 2 295 DOI: 10.1039/j19670000295
[59]
Dugan A Henisch H 1967 J. Phys. Chem. Solids 28 971 DOI: 10.1016/0022-3697(67)90213-2
[60]
Jonscher A K 1977 Nature 267 673 DOI: 10.1038/267673a0
[1] Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles
Archana V, Lakshmi Mohan, Kathirvel P, and Saravanakumar S. Chin. Phys. B, 2021, 30(4): 048202.
[2] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[3] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[4] Enhanced dielectric and optical properties of nanoscale barium hexaferrites for optoelectronics and high frequency application
J Mohammed, A B Suleiman, Tchouank Tekou Carol T, H Y Hafeez, Jyoti Sharma, Pradip K Maji, Sachin Godara Kumar, A K Srivastava. Chin. Phys. B, 2018, 27(12): 128104.
[5] Structural and optical properties of thermally reduced graphene oxide for energy devices
Ayesha Jamil, Faiza Mustafa, Samia Aslam, Usman Arshad, Muhammad Ashfaq Ahmad. Chin. Phys. B, 2017, 26(8): 086501.
[6] Synthesis and characterization of NaAlSi2O6 jadeite under 3.5 GPa
Gang Li(李刚), Jian Wang(王健), Ya-Dong Li(李亚东), Ning Chen(陈宁), Liang-Chao Chen(陈良超), Long-Suo Guo(郭龙锁), Liang Zhao(赵亮), Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2017, 26(6): 068202.
[7] Effective dielectric constant model of electromagnetic backscattering from stratified air-sea surface film-sea water medium
Tao Xie(谢涛), William Perrie, He Fang(方贺), Li Zhao(赵立), Wen-Jin Yu(于文金), Yi-Jun He(何宜军). Chin. Phys. B, 2017, 26(5): 054102.
[8] Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals
Si-Qi Zhang(张斯淇), Jing-Bin Lu(陆景彬), Yu Liang(梁禺), Ji Ma(马季), Hong Li(李宏), Xue Li(李雪), Xiao-Jing Liu(刘晓静), Xiang-Yao Wu(吴向尧), Xiang-Dong Meng(孟祥东). Chin. Phys. B, 2017, 26(2): 024208.
[9] Modulation and control of DNA charge inversion
Yan-Wei Wang(王艳伟), Guang-Can Yang(杨光参). Chin. Phys. B, 2017, 26(12): 128706.
[10] Zn-Cu-codoped SnO2 nanoparticles:Structural, optical, and ferromagnetic behaviors
Syed Zulfiqar, Zainab Iqbal, Jianguo Lü(吕建国). Chin. Phys. B, 2017, 26(12): 126104.
[11] Nonlinear parametric interactions in ion-implanted semiconductor plasmas having strain-dependent dielectric constants
N Yadav, S Ghosh, P S Malviya. Chin. Phys. B, 2017, 26(1): 015203.
[12] Magnetoelectric effect in multiferroic NdMn2O5
Syed Hamad Bukhari, Javed Ahmad. Chin. Phys. B, 2017, 26(1): 018103.
[13] Preparation and structural properties of thin carbon films by very-high-frequency magnetron sputtering
Ming-Wei Gao(高明伟), Chao Ye(叶超), Xiang-Ying Wang(王响英), Yi-Song He(何一松), Jia-Min Guo(郭佳敏), Pei-Fang Yang(杨培芳). Chin. Phys. B, 2016, 25(7): 075202.
[14] Improvement of sintering, nonlinear electrical, and dielectric properties of ZnO-based varistors doped with TiO2
Osama A Desouky, K E Rady. Chin. Phys. B, 2016, 25(6): 068402.
[15] Alternating current characterization of nano-Pt(II) octaethylporphyrin (PtOEP) thin film as a new organic semiconductor
M Dongol, M M El-Nahass, A El-Denglawey, A A Abuelwafa, T Soga. Chin. Phys. B, 2016, 25(6): 067201.
No Suggested Reading articles found!