Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097402    DOI: 10.1088/1674-1056/aba2e2
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers

Hai-Lin Huang(黄海林)1,2, Liang Zhu(朱亮)1,2, Hui Zhang(张慧)1,2, Jin-E Zhang(张金娥)1,2, Fu-Rong Han(韩福荣)1,2, Jing-Hua Song(宋京华)1,2, Xiaobing Chen(陈晓冰)1,2, Yuan-Sha Chen(陈沅沙)1,2, Jian-Wang Cai(蔡建旺)1,2, Xue-Dong Bai(白雪冬)1,2, Feng-Xia Hu(胡凤霞)1,2, Bao-Gen Shen(沈保根)1,2,3, Ji-Rong Sun(孙继荣)1,2,3
1 Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Grouping different oxide materials with coupled charge, spin, and orbital degrees of freedom together to form heterostructures provides a rich playground to explore the emergent interfacial phenomena. The perovskite/brownmillerite heterostructure is particularly interesting since symmetry mismatch may produce considerable interface reconstruction and unexpected physical effects. Here, we systemically study the magnetic anisotropy of tensely strained La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers with interface structures changing from perovskite/brownmillerite type to perovskite/perovskite type. Without Mn doping, the initial La2/3Sr1/3CoO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3CoO2.5+δ trilayer with perovskite/brownmillerite interface type exhibits perpendicular magnetic anisotropy and the maximal anisotropy constant is 3.385×106 erg/cm3, which is more than one orders of magnitude larger than that of same strained LSMO film. By increasing the Mn doping concentration, the anisotropy constant displays monotonic reduction and even changes from perpendicular magnetic anisotropy to in-plane magnetic anisotropy, which is possible because of the reduced CoO4 tetrahedra concentration in the La2/3Sr1/3Co1-xMnxO2.5+δ layers near the interface. Based on the analysis of the x-ray linear dichroism, the orbital reconstruction of Mn ions occurs at the interface of the trilayers and thus results in the controllable magnetic anisotropy.
Keywords:  perovskite/brownmillerite heterostructure      magnetic anisotropy      orbital reconstruction  
Received:  04 June 2020      Revised:  30 June 2020      Published:  05 September 2020
PACS:  74.78.Fk (Multilayers, superlattices, heterostructures)  
  75.30.Gw (Magnetic anisotropy)  
  75.25.Dk (Orbital, charge, and other orders, including coupling of these orders)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300701, 2017YFA0206300, 2017YFA0303601, and 2018YFA0305704), the National Natural Science Foundation of China (Grant Nos. 11520101002, 51590880, 11674378, 11934016, and 51972335), and the Key Program of the Chinese Academy of Sciences.
Corresponding Authors:  Ji-Rong Sun     E-mail:  jrsun@iphy.ac.cn

Cite this article: 

Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣) Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers 2020 Chin. Phys. B 29 097402

[1] Okamoto S and Millis A J 2004 Nature 428 630
[2] Chakhalian J, Freeland J W, Habermeier H U, Cristiani G, Khaliullin G, van Veenendaal M and Keimer B 2007 Science 318 1114
[3] Zubko P, Gariglio S, Gabay M, Ghosez P and Triscone J M 2011 Annu. Rev. Condens. Matter Phys. 2 141
[4] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103
[5] Cui B, Song C, Li F, Wang G Y, Mao H J, Peng J J, Zeng F and Pan F 2015 Sci. Rep. 4 4206
[6] Bhattacharya A and May S J 2014 Annu. Rev. Mater. Res. 44 65
[7] Hellman F, Hoffmann A, Tserkovnyak Y et al. 2017 Rev. Mod. Phys. 89 025006
[8] Dieny B and Chshiev M 2017 Rev. Mod. Phys. 89 025008
[9] Chappert C, Fert A and Van Dau F N 2007 Nat. Mater. 6 813
[10] Ngai J H, Walker F J and Ahn C H 2014 Annu. Rev. Mater. Res. 44 1
[11] Kent A D and Worledge D C 2015 Nat. Nanotechnol. 10 187
[12] He J, Borisevich A, Kalinin S V, Pennycook S J and Pantelides S T 2010 Phys. Rev. Lett. 105 227203
[13] Rondinelli J M, May S J and Freeland J W 2012 MRS Bull. 37 261
[14] Aso R, Kan D, Shimakawa Y and Kurata H 2013 Sci. Rep. 3 2214
[15] Aso R, Kan D, Shimakawa Y and Kurata H 2014 Adv. Funct. Mater. 24 5177
[16] Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Van Aert S, Verbeeck J, Van Tendeloo G, Held K, Sawatzky G A, Koster G and Rijnders G 2016 Nat. Mater. 15 425
[17] Kan D, Aso R, Sato R, Haruta M, Kurata H and Shimakawa Y 2016 Nat. Mater. 15 432
[18] Yi D, Flint C L, Balakrishnan P P, Mahalingam K, Urwin B, Vailionis A, N'Diaye A T, Shafer P, Arenholz E, Choi Y, Stone K H, Chu J H, Howe B M, Liu J, Fisher I R and Suzuki Y 2017 Phys. Rev. Lett. 119 077201
[19] Ismail-Beigi S, Walker F J, Disa A S, Rabe K M and Ahn C H 2017 Nat. Rev. Mater. 2 17060
[20] Wang L F, Feng Q Y, Kim Y, Kim R, Lee K H, Pollard S D, Shin Y J, Zhou H B, Peng W, Lee D, Meng W J, Yang H, Han J H, Kim M, Lu Q Y and Noh T W 2018 Nat. Mater. 17 1087
[21] Ding J F, Cossu F, Lebedev O I, Zhang Y Q, Zhang Z D, Schwingenschlogl U and Wu T 2016 Adv. Mater. Interfaces 3 1500676
[22] Zhang J, Zhong Z, Guan X, Shen X, Zhang J, Han F, Zhang H, Zhang H, Yan X, Zhang Q, Gu L, Hu F, Yu R, Shen B and Sun J 2018 Nat. Commun. 9 04304
[23] Zhang J E, Han F R, Wang W, Shen X, Zhang J, Zhang H, Huang H L, Zhang H R, Chen X B, Qi S J, Chen Y S, Hu F X, Yan S S, Shen B G, Yu R C and Sun J R 2019 Phys. Rev. B 100 094432
[24] Behera B C, Jana S, Bhat S G, Gauquelin N, Tripathy G, Anil Kumar P S and Samal D 2019 Phys. Rev. B 99 024425
[25] Liu B, Wang Y Q, Liu G J, Feng H L, Yang H W, Xue X Y and Sun J R 2016 Phys. Rev. B 93 094421
[26] Li J, Wang J, Kuang H, Zhang H R, Zhao Y Y, Qiao K M, Wang F, Liu W, Wang W, Peng L C, Zhang Y, Yu R C, Hu F X, Sun J R and Shen B G 2017 Nanoscale 9 13214
[27] Zhang J E, Chen X X, Zhang Q H, Han F R, Zhang J, Zhang H, Zhang H R, Huang H L, Qi S J, Yan X, Gu L, Chen Y S, Hu F X, Yan S S, Liu B G, Shen B G and Sun J R 2018 ACS Appl. Mater. Interfaces 10 40951
[28] Steenbeck K and Hiergeist R 1999 Appl. Phys. Lett. 75 1778
[29] Steenbeck K, Habisreuther T, Dubourdieu C and Sénateur J P 2002 Appl. Phys. Lett. 80 3361
[30] Yang H W, Zhang H R, Li Y, Wang S F, Shen X, Lan Q Q, Meng S, Yu R C, Shen B G and Sun J R 2015 Sci. Rep. 4 06206
[31] Bruno P 1989 Phys. Rev. B 39 865
[32] Huang H B, Shishidou T and Jo T 2000 J. Phys. Soc. Jpn. 69 2399
[33] Huijben M, Martin L W, Chu Y H, Holcomb M B, Yu P, Rijnders G, Blank D H A and Ramesh R 2008 Phys. Rev. B 78 094413
[34] Tebano A, Aruta C, Sanna S, Medaglia P G, Balestrino G, Sidorenko A A, De Renzi R, Ghiringhelli G, Braicovich L, Bisogni V and Brookes N B 2008 Phys. Rev. Lett. 100 137401
[35] Yi D, Lu N P, Chen X G, Shen S C and Yu P 2017 J. Phys.: Condens. Matter 29 443004
[36] Huang D J, Wu W B, Guo G Y, Lin H J, Hou T Y, Chang C F, Chen C T, Fujimori A, Kimura T, Huang H B, Tanaka A and Jo T 2004 Phys. Rev. Lett. 92 087202
[37] Aruta C, Ghiringhelli G, Tebano A, Boggio N G, Brookes N B, Medaglia P G and Balestrino G 2006 Phys. Rev. B 73 235121
[38] Pesquera D, Herranz G, Barla A, Pellegrin E, Bondino F, Magnano E, Sanchez F and Fontcuberta J 2012 Nat. Commun. 3 1189
[39] Peng J, Song C, Li F, Cui B, Mao H, Wang Y, Wang G and Pan F 2015 ACS Appl. Mat. Interfaces 7 17700
[40] Cui B, Li F, Song C, Peng J J, Saleem M S, Gu Y D, Li S N, Wang K L and Pan F 2016 Phys. Rev. B 94 134403
[41] Bruno P, Magnetismus Von Festkörpern und Grenzflächen 1993 KFA: Jülich Germany, Chapter 24 1-p
[1] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[2] Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates
Jiapeng Zhao(赵佳鹏), Qinhuang Guo(郭勤皇), Huizhong Yin(尹慧中), Jintang Zou(邹锦堂), Zhenjie Zhao(赵振杰), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Qingfeng Zhan(詹清峰). Chin. Phys. B, 2020, 29(11): 117501.
[3] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[4] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波), Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), Jun Du(杜军). Chin. Phys. B, 2020, 29(10): 107503.
[5] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
[6] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[7] Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), ZongKai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(9): 097504.
[8] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
[9] Diverse features of magnetization curves of uniaxial crystals: A simulation study
Hala A. Sobh, Samy H. Aly. Chin. Phys. B, 2017, 26(1): 017503.
[10] Influence of Tb on easy magnetization direction and magnetostriction of ferromagnetic Laves phase GdFe2 compounds
Adil Murtaza, Sen Yang(杨森), Chao Zhou(周超), Xiaoping Song(宋晓平). Chin. Phys. B, 2016, 25(9): 096107.
[11] Manipulating magnetic anisotropies of Co/MgO(001) ultrathin films via oblique deposition
Syed Sheraz Ahmad, Wei He(何为), Jin Tang(汤进), Yong Sheng Zhang(张永圣), Bo Hu(胡泊), Jun Ye(叶军), Qeemat Gul, Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2016, 25(9): 097501.
[12] Study of magnetization reversal and anisotropy of single crystalline ultrathin Fe/MgO (001) film by magneto-optic Kerr effect
Miao-Ling Zhang(张苗玲), Jun Ye(叶军), Rui Liu(刘锐), Shu Mi(米菽), Yong Xie(谢勇), Hao-Liang Liu(刘郝亮), Chris Van Haesendonck, Zi-Yu Chen(陈子瑜). Chin. Phys. B, 2016, 25(4): 047503.
[13] Effect of Mo capping layers thickness on the perpendicular magnetic anisotropy in MgO/CoFeB based top magnetic tunnel junction structure
Yi Liu(刘毅), Kai-Gui Zhu(朱开贵), Hui-Cai Zhong(钟汇才), Zheng-Yong Zhu(朱正勇), Tao Yu(于涛), Su-De Ma(马苏德). Chin. Phys. B, 2016, 25(11): 117805.
[14] Nonmonotonic effects of perpendicular magnetic anisotropy on current-driven vortex wall motions in magnetic nanostripes
Su Yuan-Chang, Lei Hai-Yang, Hu Jing-Guo. Chin. Phys. B, 2015, 24(9): 097506.
[15] Tuning the magnetic anisotropy of CoFeB grown on flexible substrates
Zhang Hao, Li Yuan-Yuan, Yang Mei-Yin, Zhang Bao, Yang Guang, Wang Shou-Guo, Wang Kai-You. Chin. Phys. B, 2015, 24(7): 077501.
No Suggested Reading articles found!