Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 074701    DOI: 10.1088/1674-1056/ab943f
Special Issue: SPECIAL TOPIC — Active matters physics
TOPICAL REVIEW—Active matters physics Prev   Next  

Simulation of microswimmer hydrodynamics with multiparticle collision dynamics

Andreas Zöttl
Institute for Theoretical Physics, TU Wien, Wiedner Hauptstra\sse 8-10, 1040 Wien, Austria
Abstract  In this review we discuss the recent progress in the simulation of soft active matter systems and in particular the hydrodynamics of microswimmers using the method of multiparticle collision dynamics, which solves the hydrodynamic flows around active objects on a coarse-grained level. We first present a brief overview of the basic simulation method and the coupling between microswimmers and fluid. We then review the current achievements in simulating flexible and rigid microswimmers using multiparticle collision dynamics, and briefly conclude and discuss possible future directions.
Keywords:  active matter      multiparticle {collision} dynamics      microswimmers      coarse-grained hydrodynamic simulations  
Received:  09 March 2020      Revised:  12 May 2020      Published:  05 July 2020
PACS:  47.63.Gd (Swimming microorganisms)  
  47.11.St (Multi-scale methods)  
  87.17.Jj (Cell locomotion, chemotaxis)  
  05.40.Jc (Brownian motion)  
Fund: This project acknowledges funding from the Austrian Science Fund (FWF) through a Lise-Meitner Fellowship (Grant No. M 2458-N36).
Corresponding Authors:  Andreas Z?ttl     E-mail:  andreas.zoettl@tuwien.ac.at

Cite this article: 

Andreas Zöttl Simulation of microswimmer hydrodynamics with multiparticle collision dynamics 2020 Chin. Phys. B 29 074701

[1] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha R A 2013 Rev. Mod. Phys. 85 1143
[2] Vicsek T and Zafeiris A 2012 Phys. Rep. 517 71
[3] Purcell E M 1977 Am. J. Phys. 45 3
[4] Lauga E and Powers T R 2009 Rep. Prog. Phys. 72 096601
[5] Elgeti J, Winkler R G and Gompper G 2015 Rep. Prog. Phys. 78 056601
[6] Zöttl A and Stark H 2016 J. Phys.: Condens. Matter 28 253001
[7] Prost J, Jülicher F and Joanny J F 2015 Nat. Phys. 11 111
[8] Dünweg B and Ladd A J C 2009 Adv. Comput. Simul. Approaches Soft Matter Sci. Ⅲ 221 89
[9] Español P and Warren P B 2017 J. Chem. Phys. 146 150901
[10] Gompper G, Ihle T, Kroll D M and Winkler R G 2009 Adv. Comput. Simul. Approaches Soft Matter Sci. Ⅲ 221 1
[11] Kapral R 2008 Adv. Chem. Phys. 140 89
[12] Malevanets A and Kapral R 1999 J. Chem. Phys. 110 8605
[13] Malevanets A and Kapral R 2000 J. Chem. Phys. 112 7260
[14] Zöttl A and Stark H 2018 Eur. Phys. J. E 41 61
[15] Malevanets a and Yeomans J M 2000 Europhys. Lett. 52 231
[16] Elgeti J 2006 Sperm and Cilia Dynamics (PhD Thesis, Universität Köln)
[17] Elgeti J and Gompper G 2008 NIC Symposium 39 53
[18] Yang Y, Elgeti J and Gompper G 2008 Phys. Rev. E 78 061903
[19] Elgeti J, Kaupp U B and Gompper G 2010 Biophys. J. 99 1018
[20] Chinnasamy T, Kingsley J L, Inci F, Turek P J, Rosen M P, Behr B, Tüzel E and Demirci U 2018 Adv. Sci. 5 1700531
[21] Rode S, Elgeti J and Gompper G 2019 New J. Phys. 21 013016
[22] Taylor G I 1951 Proc. Roy. Soc. A 209 447
[23] Yang Y, Marceau V and Gompper G 2010 Phys. Rev. E 82 031904
[24] Münch J L, Alizadehrad D, Babu S B and Stark H 2016 Soft Matter 12 7350
[25] Yang Y, Qiu F and Gompper G 2014 Phys. Rev. E 89 012720
[26] Riedel I H, Kruse K and Howard J 2005 Science 309 300
[27] Elgeti J and Gompper G 2013 Europhys. Lett. 101 48003
[28] Qiu T, Lee T C, Mark A G, Morozov K I, Münster R, Mierka O, Turek S, Leshansky A M and Fischer P 2014 Nat. Commun. 5 5119
[29] Choudhary P, Mandal S and Babu S B 2018 J. Phys. Commun. 2 025009
[30] Najafi A and Golestanian R 2004 Phys. Rev. E 69 062901
[31] Earl D J, Pooley C M, Ryder J F, Bredberg I and Yeomans J M 2007 J. Chem. Phys. 126 064703
[32] Lauga E 2016 Annu. Rev. Fluid Mech. 48 105
[33] Reigh S Y, Winkler R G and Gompper G 2012 Soft Matter 8 4363
[34] Reigh S Y, Winkler R G and Gompper G 2013 PloS One 8 e70868
[35] Balin A K, Zöttl A, Yeomans J M and Shendruk T N 2017 Phys. Rev. Fluids 2 113102
[36] Hu J, Yang M, Gompper G and Winkler R G 2015 Soft Matter 11 7867
[37] DiLuzio W R, Turner L, Mayer M, Garstecki P, Weibel D B, Berg H C and Whitesides G M 2005 Nature 435 1271
[38] Lauga E, DiLuzio W R, Whitesides G M and Stone H A 2006 Biophys. J. 90 400
[39] Hu J, Wysocki A, Winkler R G and Gompper G 2015 Sci. Rep. 5 9586
[40] Di Leonardo R, Dell'Arciprete D, Angelani L and Iebba V 2011 Phys. Rev. Lett. 106 038101
[41] Zöttl A and Yeomans J M 2019 Nat. Phys. 15 554
[42] Zöttl A and Yeomans J M 2019 J. Phys.: Condens. Matter 31 234001
[43] Babu S B and Stark H 2012 New J. Phys. 14 085012
[44] Babu S B, Schmeltzer C and Stark H 2012 Nature-Inspired Fluid Mechanics 119 25
[45] Heddergott N, Krüger T, Babu S B, Wei A, Stellamanns E, Uppaluri S, Pfohl T, Stark H and Engstler M 2012 PLoS Pathog. 8 e1003023
[46] Alizadehrad D, Krüger T, Engstler M and Stark H 2015 PLoS Comput. Biol. 11 e1003967
[47] Brennen C and Winet H 1977 Ann. Rev. Fluid Mech. 9 339
[48] Lighthill J M 1952 Commun. Pure Appl. Math. 5 109
[49] Blake J R 1971 J. Fluid Mech. 46 199
[50] Downton M T and Stark H 2009 J. Phys.: Condens. Matter 21 204101
[51] Gotze I O and Gompper G 2010 Phys. Rev. E 82 041921
[52] Schaar K, Zöttl A and Stark H 2015 Phys. Rev. Lett. 115 038101
[53] Zöttl A and Stark H 2014 Phys. Rev. Lett. 112 118101
[54] Theers M, Westphal E, Gompper G and Winkler R G 2016 Soft Matter 12 7372
[55] Zöttl A and Stark H 2012 Phys. Rev. Lett. 108 218104
[56] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006
[57] Blaschke J, Maurer M, Menon K, Zöttl A and Stark H 2016 Soft Matter 12 9821
[58] Theers M, Westphal E, Qi K, Winkler R G and Gompper G 2018 Soft Matter 14 8590
[59] Rühle F, Blaschke J, Kuhr J T and Stark H 2018 New J. Phys. 20 025003
[60] Kuhr J T, Blaschke J, Rühle F and Stark H 2017 Soft Matter 13 7548
[61] Kuhr J T, Rühle F and Stark H 2019 Soft Matter 15 5685
[62] Rühle F and Stark H 2020 arXiv:2020.04323
[63] Qi K, Westphal E, Gompper G and Winkler R G 2020 Phys. Rev. Lett. 124 68001
[64] Gomez-Solano J R, Blokhuis A and Bechinger C 2016 Phys. Rev. Lett. 116 138301
[65] Elgeti J and Gompper G 2009 Europhys. Lett. 85 38002
[66] Anand S K and Singh S P 2019 Soft Matter 15 4008
[67] Schwarzendahl F J and Mazza M G 2018 Soft Matter 14 4666
[68] Schwarzendahl F J and Mazza M G 2019 arXiv:1908.10631
[69] Schwarzendahl F J and Mazza M G 2019 J. Chem. Phys. 150 184902
[70] Dennison M, Kapral R and Stark H 2017 Soft Matter 13 3741
[71] Tucci K and Kapral R 2004 J. Chem. Phys. 120 8262
[72] de Buyl P and Kapral R 2013 Nanoscale 5 1337
[73] Huang M J, Schofield J and Kapral R 2016 Soft Matter 12 5581
[74] Huang M J, Schofield J and Kapral R 2017 New J. Phys. 19 125003
[75] Huang M J, Schofield J, Gaspard P and Kapral R 2018 J. Chem. Phys. 149 024904
[76] Huang M J, Schofield J, Gaspard P and Kapral R 2019 J. Chem. Phys. 150 124110
[77] Rückner G and Kapral R 2007 Phys. Rev. Lett. 98 150603
[78] Tao Y G and Kapral R 2008 J. Chem. Phys. 128 164518
[79] Tao Y G and Kapral R 2009 J. Chem. Phys. 131 024113
[80] Tao Y G and Kapral R 2010 Soft Matter 6 756
[81] Valadares L F, Tao Y G, Zacharia N S, Kitaev V, Galembeck F, Kapral R and Ozin G A 2010 Small 6 565
[82] Thakur S and Kapral R 2011 J. Chem. Phys. 135 024509
[83] Thakur S and Kapral R 2012 Phys. Rev. E 85 026121
[84] Yang M and Ripoll M 2011 Phys. Rev. E 84 061401
[85] Yang M, Wysocki A and Ripoll M 2014 Soft Matter 10 6208
[86] Reigh S Y and Kapral R 2015 Soft Matter 11 3149
[87] Reigh S Y, Chuphal P, Thakur S and Kapral R 2018 Soft Matter 14 6043
[88] Yu T, Chuphal P, Thakur S, Reigh S Y, Singh D P and Fischer P 2018 Chem. Commun. 54 11933
[89] Colberg P H and Kapral R 2015 J. Chem. Phys. 143 184906
[90] Colberg P H and Kapral R 2014 Europhys. Lett. 106 30004
[91] Colberg P H and Kapral R 2017 J. Chem. Phys. 147 064910
[92] Robertson B, Stark H and Kapral R 2018 Chaos 28 045109
[93] Chen J X, Chen Y G and Kapral R 2018 Adv. Sci. 5 1800028
[94] Chen J X, Zhan S, Qiao L Y, Ding H L and Ma Y Q 2019 Europhys. Lett. 125 26002
[95] Deprez L and de Buyl P 2017 Soft Matter 13 3532
[96] de Buyl P 2019 Phys. Rev. E 100 022603
[97] Reigh S Y, Huang M J, Lowen H, Lauga E and Kapral R 2020 Soft Matter 16 1236
[98] Sarkar D and Thakur S 2016 Phys. Rev. E 93 032508
[99] Sarkar D and Thakur S 2017 J. Chem. Phys. 146 154901
[100] Sahoo S, Singh S P and Thakur S 2019 Soft Matter 15 2170
[101] Wagner M and Ripoll M 2017 Europhys. Lett. 119 66007
[102] Wagner M and Ripoll M 2019 Int. J. Mod. Phys. C 30 1941008
[103] Yu N, Lou X, Chen K and Yang M 2019 Soft Matter 15 408
[104] Alekseeva U, Winkler R G and Sutmann G 2016 J. Comput. Phys. 314 14
[105] Montessori A, Tiribocchi A, Lauricella M and Succi S 2020 arXiv preprint arXiv:2004.00304
[106] Saintillan D and Shelley M J 2007 Phys. Rev. Lett. 99 058102
[107] Thampi S P, Doostmohammadi A, Shendruk T N, Golestanian R and Yeomans J M 2016 Sci. Adv. 2 e1501854
[108] Li H, Shi X, Huang M, Chen X, Xiao M, Liu C, Chaté H and Zhang H P 2019 Proc. Natl. Acad. Sci. USA 116 777
[1] Symmetry properties of fluctuations in an actively driven rotor
He Li(李赫), Xiang Yang(杨翔), Hepeng Zhang(张何朋). Chin. Phys. B, 2020, 29(6): 060502.
[2] Self-assembled vesicle-colloid hybrid swimmers: Non-reciprocal strokes with reciprocal actuation
Jaime Agudo-Canalejo, Babak Nasouri. Chin. Phys. B, 2020, 29(6): 064704.
[3] Collective motion of active particles in environmental noise
Qiu-shi Chen(陈秋实), Ming Ji(季铭). Chin. Phys. B, 2017, 26(9): 098903.
[4] Anomalous boundary deformation induced by enclosed active particles
Wen-De Tian(田文得), Yan Gu(顾燕), Yong-Kun Guo(郭永坤), Kang Chen(陈康). Chin. Phys. B, 2017, 26(10): 100502.
No Suggested Reading articles found!