Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 074210    DOI: 10.1088/1674-1056/ab8c41

High-performance frequency stabilization of ultraviolet diode lasers by using dichroic atomic vapor spectroscopy and transfer cavity

Danna Shen(申丹娜)1, Liangyu Ding(丁亮宇)1, Qiuxin Zhang(张球新)1, Chenhao Zhu(朱晨昊)1, Yuxin Wang(王玉欣)1, Wei Zhang(张威)1,2, Xiang Zhang(张翔)1,2
1 Department of Physics, Renmin University of China, Beijing 100872, China;
2 Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
Abstract  We develop a high-performance ultraviolet (UV) frequency stabilization technique implemented directly on UV diode lasers by combining the dichroic atomic vapor laser lock and the resonant transfer cavity lock. As an example, we demonstrate a stable locking with measured frequency standard deviations of approximately 200 kHz and 300 kHz for 399 nm and 370 nm diode lasers in 20 min. We achieve a long-term frequency drift of no more than 1 MHz for the target 370 nm laser within an hour, which is further verified with fluorescence count rates of a single trapped 171Yb+ ion. We also find strong linear correlations between lock points and environmental factors such as temperature and atmospheric pressure. Our approach provides a simple and stable solution at a relatively low cost, and features flexible control, high feedback bandwidth and minimal power consumption of the target UV laser.
Keywords:  frequency stabilization      ultraviolet diode laser      dichroic atomic vapor spectroscopy      transfer cavity  
Received:  10 March 2020      Revised:  16 April 2020      Accepted manuscript online: 
PACS:  42.55.-f (Lasers)  
  42.60.-v (Laser optical systems: design and operation)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  32.30.-r (Atomic spectra?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704408 and 91836106), the Beijing Natural Science Foundation, China (Grant No. Z180013), and the Joint Fund of the Ministry of Education, China (Grant No. 6141A020333xx).
Corresponding Authors:  Xiang Zhang     E-mail:

Cite this article: 

Danna Shen(申丹娜), Liangyu Ding(丁亮宇), Qiuxin Zhang(张球新), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Wei Zhang(张威), Xiang Zhang(张翔) High-performance frequency stabilization of ultraviolet diode lasers by using dichroic atomic vapor spectroscopy and transfer cavity 2020 Chin. Phys. B 29 074210

[1] Zhang X, Zhang K, Shen Y C, Zhang S N, Zhang J N, Yung M H, Casanova J, Pedernales J S, Lamata L, Solano E and Kim K 2018 Nat. Commun. 9 1
[2] Guan H, Huang Y, Liu P L, Bian W, Shao H and Gao K L 2015 Chin. Phys. B 24 054213
[3] Heinzen D J and Wineland D J 1990 Phys. Rev. A 42 2977
[4] Wan J H, Liu C and Wang Y H 2016 Chin. Phys. B 25 044204
[5] Zhang X, Huang K K, Xu H, Xu Z X, Li N and Lu X H 2012 Chin. Phys. Lett. 29 074206
[6] Zhou T, Qi X H, Wang Q, Xiong W, Duan Jun, Zhou X J and Chen X Z 2010 Chin. Opt. Lett. 8 496
[7] Dammalapati U, Norris I and Riis E 2009 J. Phys. B: At. Mol. Opt. Phys. 42 165001
[8] Zhang Z, Wang X L and Lin Q 2009 Opt. Express 17 10372
[9] Haroche S and Hartmann F 1972 Phys. Rev. A 6 1280
[10] Zhu S B, Chen T, Li X L and Wang Y Z 2014 J. Opt. Soc. Am. B 31 2302
[11] Lee M W, Jarratt M C, Marciniak C and Biercuk M J 2014 Opt. Express 22 7210
[12] Sun J F, Yin S Q, Xu Z, Hong T and Wang Y Z 2013 Chin. Phys. B 22 024207
[13] Do H D, Moon G and Noh H R 2008 Phys. Rev. A 77 032513
[14] Ru N, Wang Y, Ma H J, Hu D, Zhang L and Fan S C 2018 Chin. Phys. B 27 074201
[15] Wu C F, Yan X S, Wei L X, Ma P, Tu J H, Zhang J W and Wang L J 2018 Chin. Phys. B 27 114203
[16] Cheng B, Wang Z Y, Wu B, Xu A P, Wang Q Y, Xu Y F and Lin Q 2014 Chin. Phys. B 23 104222
[17] Wang W L, Ye J, Jiang H L, Bi Z Y, Ma L S and Xu X Y 2011 Chin. Phys. B 20 013201
[18] Noh H R, Park S E, Li L Z, Park J D and Cho C H 2011 Opt. Express 19 23444
[19] McCarron D J, King S A and Cornish S L 2008 Meas. Sci. Technol. 19 105601
[20] Zhang L J, Zhang H, Zhao Y T, Xiao L T and Jia S T 2019 Chin. Phys. B 28 084211
[21] Kim J I, Park C Y, Yeom J Y, Kim E B and Yoon T H 2003 Opt. Lett. 28 245
[22] Corwin K L, Lu Z T, Hand C F, Epstein R J and Wieman C E 1998 Appl. Opt. 37 3295
[23] Wang H M, Xu Z S, Ma S C, Cai M H, You S H and Liu H P 2019 Opt. Lett. 44 5816
[24] Subhankar S, Restelli A, Wang Y, Rolston S L and Porto J V 2019 Rev. Sci. Instrum. 90 043115
[25] Jackson S, Sawaoka H, Bhatt N, Potnis S and Vutha A C 2018 Rev. Sci. Instrum. 89 033109
[26] Uetake S, Matsubara K, Ito H, Hayasaka K and Hosokawa M 2009 Appl. Phys. B 97 413
[27] Bohlouli Z P, Afrousheh K and Martin J D D 2006 Rev. Sci. Instrum. 77 093105
[28] Milani G, Rauf B, Barbieri P, Bregolin F, Pizzocaro M, Thoumany P, Levi F and Calonico D 2017 Opt. Lett. 42 1970
[29] Yang B D, Wang J, Liu H F, He J and Wang J M 2014 Opt. Commun. 319 174
[30] Jiao Y C, Li J K, Wang L M, Zhang H, Zhang L J, Zhao J M and Jia S T 2016 Chin. Phys. B 25 053201
[31] Eloranta E W and Razenkov I A 2006 Opt. Lett. 31 598
[32] Jorgensen N B, Birkmose D, Trelborg K, Wacker L, Winter N, Hilliard A J, Bason M G and Arlt J J 2016 Rev. Sci. Instrum. 87 073106
[33] Feng G S, Wu J Z, Wang X F, Zheng N X, Li Y Q, Ma J, X L T and Jia S T 2015 Chin. Phys. B 24 104211
[1] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[2] Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation
Yang-Yang Liu(刘杨洋), Zhuo Fu(付卓), Peng Xu(许鹏), Xiao-Dong He(何晓东), Jin Wang(王谨), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2021, 30(7): 074203.
[3] Non-crossover sub-Doppler DAVLL in selective reflection scheme
Lin-Jie Zhang(张临杰), Hao Zhang(张好), Yan-Ting Zhao(赵延霆), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2019, 28(8): 084211.
[4] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[5] A long-term frequency-stabilized erbium-fiber-laser-based optical frequency comb with an intra-cavity electro-optic modulator
Zhang Yan-Yan (张颜艳), Yan Lu-Lu (闫露露), Zhao Wen-Yu (赵文宇), Meng Sen (孟森), Fan Song-Tao (樊松涛), Zhang Long (张龙), Guo Wen-Ge (郭文阁), Zhang Shou-Gang (张首刚), Jiang Hai-Feng (姜海峰). Chin. Phys. B, 2015, 24(6): 064209.
[6] Arbitrary frequency stabilization of a diode laser based on visual Labview PID VI and sound card output
Feng Guo-Sheng (冯国胜), Wu Ji-Zhou (武寄洲), Wang Xiao-Feng (王晓锋), Zheng Ning-Xuan (郑宁宣), Li Yu-Qing (李玉清), Ma Jie (马杰), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(10): 104211.
[7] Frequency stabilization of a 399-nm laser by modulation transfer spectroscopy in an ytterbium hollow cathode lamp
Wang Wen-Li(王文丽), Ye Jie(叶捷), Jiang Hai-Ling(蒋海灵), Bi Zhi-Yi(毕志毅), Ma Long-Sheng(马龙生), and Xu Xin-Ye(徐信业). Chin. Phys. B, 2011, 20(1): 013201.
[8] Study of a low power dissipation, miniature laser-pumped rubidium frequency standard
Liu Guo-Bin(刘国宾), Zhao Feng(赵峰), and Gu Si-Hong(顾思洪). Chin. Phys. B, 2009, 18(9): 3839-3843.
[9] Vibration insensitive optical ring cavity
Miao Jin(缪瑾), Jiang Yan-Yi(蒋燕义), Fang Su(方苏), Bi Zhi-Yi(毕志毅), and Ma Long-Sheng(马龙生). Chin. Phys. B, 2009, 18(6): 2334-2339.
[10] Two-hertz-linewidth Nd:YAG lasers at 1064nm stabilized to vertically mounted ultra-stable cavities
Jiang Yan-Yi(蒋燕义), Bi Zhi-Yi(毕志毅), Xu Xin-Ye(徐信业), and Ma Long-Sheng(马龙生) . Chin. Phys. B, 2008, 17(6): 2152-2155.
[11] Decreased vibrational susceptibility of Fabry--Perot cavities via designs of geometry and structural support
Yang Tao(杨涛), Li Wen-Bo(李文博), Zang Er-Jun(臧二军), and Chen Li-Sheng(陈李生). Chin. Phys. B, 2007, 16(5): 1374-1384.
No Suggested Reading articles found!