Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 050309    DOI: 10.1088/1674-1056/ab8216
GENERAL Prev   Next  

Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states

Yu-Qian He(贺宇千)1, Yun Mao(毛云)1, Hai Zhong(钟海)1, Duang Huang(黄端)2, Ying Guo(郭迎)1
1 School of Automation, Central South University, Changsha 410083, China;
2 School of Computer Science and Engineering, Central South University, Changsha 410083, China
Abstract  Continuous-variable quantum key distribution (CVQKD) can be integrated with thermal states for short-distance wireless quantum communications. However, its performance is usually restricted with the practical thermal noise. We propose a method to improve the security threshold of thermal-state (TS) CVQKD by employing a heralded hybrid linear amplifier (HLA) at the receiver. We find the effect of thermal noise on the HLA-involved scheme in near-and-mid infrared band or terahertz band for direct and reverse reconciliation. Numerical simulations show that the HLA-involved scheme can compensate for the detriment of thermal noise and hence increase the security threshold of TS-CVQKD. In near-and-mid infrared band, security threshold can be extended by 2.1 dB in channel loss for direct reconciliation and 1.6 dB for reverse reconciliation, whereas in terahertz band, security threshold can be slightly enhanced for the gain parameter less than 1 due to the rise in thermal noise.
Keywords:  continuous-variable quantum key distribution      thermal state      hybrid linear amplifier  
Received:  08 February 2020      Revised:  07 March 2020      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61572529 and 61871407).
Corresponding Authors:  Yun Mao     E-mail:  maocsu@sina.com

Cite this article: 

Yu-Qian He(贺宇千), Yun Mao(毛云), Hai Zhong(钟海), Duang Huang(黄端), Ying Guo(郭迎) Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states 2020 Chin. Phys. B 29 050309

[1] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[2] Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
[3] Zhang S J, Ma H X, Wang X, Zhou C, Bao W S and Zhang H L 2019 Chin. Phys. B 28 080304
[4] Gong L H, Song H C, He C S, Liu Y and Zhou N R 2014 Phys. Scr. 89 035101
[5] Gessner M, Pezze L and Smerzi A 2016 Phys. Rev. A 94 020101
[6] Takeda S, Fuwa M, van Loock P and Furusawa A 2015 Phys. Rev. Lett. 114 100501
[7] Yin J, Cao Y, Li Y H et al. 2017 Science 356 1140
[8] Du G H, Li H W, Wang Y and Bao W S 2019 Chin. Phys. B 28 90301
[9] He R S, Jiang M S, Wang Y, Gan Y H, Zhou C and Bao W S 2019 Chin. Phys. B 28 040303
[10] Zhang Y, Li Z, Chen Z et al. 2019 Quantum Sci. Technol. 4 035006
[11] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[12] Qi B, Huang L L, Qian L and Lo H K 2007 Phys. Rev. A 76 052323
[13] Fossier S, Diamanti E, Debuisschert T, Villing A, Tualle-Brouri R and Grangier P 2009 New J. Phys. 11 045023
[14] Liao Q, Wang Y, Huang D and Guo Y 2018 Opt. Express 26 19907
[15] Newton E, Ghesquiére A, Wilson F L, Varcoe B T and Moseley M 2019 J. Phys. B-At. Mol. Opt. Phys. 52 125501
[16] Weedbrook C, Pirandola S and Ralph T C 2012 Phys. Rev. A 86 022318
[17] Weedbrook C, Ottaviani C and Pirandola S 2014 Phys. Rev. A 89 012309
[18] Papanastasiou P, Ottaviani C and Pirandola S 2018 Phys. Rev. A 98 032314
[19] Lu Z, Shi J H and Li F G 2017 Chin. Phys. B 26 040304
[20] Qi B, Evans P G and Grice W P 2018 Phys. Rev. A 97 012317
[21] Wu X, Wang Y, Li S, Zhang W, Huang D and Guo Y 2019 Quantum Inf. Process 18 372
[22] Usenko V C and Filip R 2010 Phys. Rev. A 81 022318
[23] Jacobsen C S, Gehring T and Andersen U L 2015 Entropy 17 4654
[24] Blandino R, Leverrier A, Barbieri M, Etesse J, Grangier P and Tualle-Brouri R 2012 Phys. Rev. A 86 012327
[25] Fiurášek J and Cerf N J 2012 Phys. Rev. A 86 060302
[26] Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R and Grangier P 2009 J. Phys. B-At. Mol. Opt. Phys. 42 114014
[27] Haw J Y, Zhao J, Dias J, Assad S M, Bradshaw M, Blandino R, Symul T, Ralph T C and Lam P K 2016 Nat. Commun. 7 13222
[28] Yang F and Qiu D 2020 Quantum Inf. Process 19 99
[29] Wang T, Yu S, Zhang Y C, Gu W and Guo H 2014 Phys. Lett. A 378 2808
[30] Chen L Q, Sheng Y B and Zhou L 2019 Chin. Phys. B 28 010302
[31] Walk N, Lund A P and Ralph T C 2013 New J. Phys. 15 073014
[32] Ye W, Zhong H, Liao Q, Huang D, Hu L and Guo Y 2019 Opt. Express 27 17186
[33] Osorio C I, Bruno N, Sangouard N, Zbinden H, Gisin N and Thew R T 2012 Phys. Rev. A 86 023815
[34] Zhao J, Dias J, Haw J Y, Symul T, Bradshaw M, Blandino R, Ralph T, Assad S M and Lam P K 2017 Optica 4 1421
[35] Zhou J, Shi R, Feng Y, Shi J and Guo Y 2019 J. Phys. A-Math. Theor. 52 245303
[36] Pirandola S, Braunstein S L and Lloyd S 2008 Phys. Rev. Lett. 101 200504
[37] Guo Y, Ye W, Zhong H and Liao Q 2019 Phys. Rev. A 99 032327
[38] Zhang S J, Xiao C, Zhou C, Wang X, Yao J S, Zhang H L and Bao W S 2020 Chin. Phys. B 29 20301
[39] Jouguet P, Kunz-Jacques S, Diamanti E and Leverrier A 2012 Phys. Rev. A 86 032309
[40] Chrzanowski H M, Walk N, Assad S M, Janousek J, Hosseini S, Ralph T C, Symul T and Lam P K 2014 Nat. Photon. 8 333
[41] Wang M J and Pan W 2010 Phys. Lett. A 374 2434
[42] Milicevic M, Feng C, Zhang L M and Gulak P G 2017 EPJ. Quantum Technol. 4 1
[43] Liu X, Zhu C, Chen N and Pei C 2018 Quantum Inf. Process 17 304
[44] Sheikh F, Zarifeh N and Kaiser T 2016 IET Microw. Antennas Propag. 10 1435
[45] Han C, Bicen A O and Akyildiz I F 2014 IEEE Trans. Wirel. Commun. 14 2402
[46] Eom B H, Day P K, LeDuc H G and Zmuidzinas J 2012 Nat. Phys. 8 623
[47] Pogorzalek S, Fedorov K G, Xu M et al. 2019 Nat. Commun. 10 1
[48] Di Candia R, Fedorov K G, Zhong L, Felicetti S, Menzel E P, Sanz M, Deppe F, Marx A, Gross R and Solano E 2015 EPJ. Quantum Technol. 2 25
[1] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[2] Reconciliation for CV-QKD using globally-coupled LDPC codes
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端). Chin. Phys. B, 2020, 29(4): 040301.
[3] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[4] Dynamical evolution of photon-added thermal state in thermal reservoir
Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春). Chin. Phys. B, 2019, 28(11): 110301.
[5] Finite-size analysis of continuous-variable quantum key distribution with entanglement in the middle
Ying Guo(郭迎), Yu Su(苏玉), Jian Zhou(周健), Ling Zhang(张玲), Duan Huang(黄端). Chin. Phys. B, 2019, 28(1): 010305.
[6] Finite-size analysis of eight-state continuous-variable quantum key distribution with the linear optics cloning machine
Hang Zhang(张航), Yu Mao(毛宇), Duan Huang(黄端), Ying Guo(郭迎), Xiaodong Wu(吴晓东), Ling Zhang(张玲). Chin. Phys. B, 2018, 27(9): 090307.
[7] Continuous-variable quantum key distribution based on continuous random basis choice
Weiqi Liu(刘维琪), Jinye Peng(彭进业), Peng Huang(黄鹏), Shiyu Wang(汪诗寓), Tao Wang(王涛), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(7): 070305.
[8] Spherical reconciliation for a continuous-variable quantum key distribution
Zhao Lu(卢钊), Jian-Hong Shi(史建红), Feng-Guang Li(李风光). Chin. Phys. B, 2017, 26(4): 040304.
[9] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[10] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[11] Explicit solution of diffusion master equation under the action of linear resonance force via the thermal entangled state representation
Yao Fei (姚飞), Wang Ji-Suo (王继锁), Xu Tian-Niu (徐天牛). Chin. Phys. B, 2015, 24(7): 070304.
[12] New formulas for normalizing photon-added (-subtracted) two-mode squeezed thermal states
Hu Li-Yun (胡利云), Fan Hong-Yi (范洪义), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2013, 22(3): 034202.
[13] Photon-number distribution of two-mode squeezed thermal states by entangled state representation
Hu Li-Yun(胡利云), Wang Shuai(王帅), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2012, 21(6): 064207.
[14] Wigner function and density operator of the photon-subtracted squeezed thermal state
Hu Li-Yun(胡利云) and Fan Hong-Yi(范洪义). Chin. Phys. B, 2009, 18(11): 4657-4661.
[15] Reduced quantum fluctuation in mesoscopic Josephson junction with nonclassical radiation field at finite temperature
Zhan You-Bang (詹佑邦). Chin. Phys. B, 2004, 13(2): 234-237.
No Suggested Reading articles found!