Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 053102    DOI: 10.1088/1674-1056/ab8208
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor

Lei Xu(许磊)1, Tian-Jie Zhang(张天杰)1, Qiao-Li Zhang(张巧丽)1, Da-Peng Yang(杨大鹏)1,2
1 School of Physics and Electronics, North China University of Water Resources and Electronic Power, Zhengzhou 450046, China;
2 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Abstract  In this work, we theoretically probe into the photo-induced hydrogen bonding effects between S0 state and S1 state as well as the excited state intramolecular proton transfer (ESIPT) behavior for a novel 2-[1,3]dithian-2-yl-6-(7 aH-indol-2-yl)-phenol (DIP) probe system. We first study the ground-state hydrogen bonding O-H…N behavior for DIP. Then we analyze the primary geometrical parameters (i.e., bond length, bond angle, and infrared (IR) stretching vibrational mode) involved in hydrogen bond, and confirm that the O-H…N of DIP should be strengthened in the first excited state. It is the significant prerequisite for ESIPT reaction. Combining the frontier molecular orbitals (MOs) with vertical excitation analyses, the intramolecular charge transfer (ICT) phenomenon can be found for the DIP system, which reveals that the charge redistribution facilitates ESIPT behavior. By constructing potential energy curves for DIP along the ESIPT reactional orientation, we obtain quite a small energy barrier (3.33 kcal/mol) and affirmed that the DIP molecule undergoes ultrafast ESIPT process once it is excited to the S1 state and quickly transfers its proton, forming DIP-keto tautomer. That is why no fluorescence of DIP can be observed in experiment, which further reveals the ultrafast ESIPT mechanism proposed in this work.
Keywords:  intramolecular charge transfer      ESIPT      molecular electrostatic potential      potential energy curves  
Received:  12 January 2020      Revised:  23 February 2020      Accepted manuscript online: 
PACS:  31.15.ee (Time-dependent density functional theory)  
  31.15.ae (Electronic structure and bonding characteristics)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574083).
Corresponding Authors:  Da-Peng Yang     E-mail:  dpyang_ncwu@163.com

Cite this article: 

Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏) Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor 2020 Chin. Phys. B 29 053102

[1] Zhang S G 2003 Nat. Biotechnol 21 1171
[2] Basabe-Desmonts L, Reinhoudt D and Crego-Calama M 2007 Chem. Soc. Rev. 36 993
[3] Riel A M S, Decato D A, Sun J Y, Massena C J, Jessop M J and Berryman O B 2018 Chem. Sci. 9 5828
[4] Zhang H, Wang S F, Sun Q and Smith S C 2009 Phys. Chem. Chem. Phys. 11 8422
[5] Zhao G J, Northrop B H, Stang P J and Han K L 2010 J. Phys. Chem. A 114 3418
[6] Liu J J, Hamza A and Zhan C G 2009 J. Am. Chem. Soc. 131 11964
[7] Suh S B, Kim J C, Choi Y C, Yun S and Kim K S 2004 J. Am. Chem. Soc. 126 2186
[8] Zhao G J and Han K L 2012 Acc. Chem. Res. 45 404
[9] Tang K C, Chen C L, Chuang H H, Chen J L, Chen Y J, Lin Y C, Shen J Y, Hu W P and Chou P T 2011 J. Phys. Chem. Lett. 2 3063
[10] Song Y Z, Liu S, Yang Y F, Wei D M, Pan J and Li Y Q 2019 Spectrochim. Acta Part. A 208 309
[11] Chen C L, Tseng H W, Chen Y A, Liu J Q, Chao C M, Liu K M, Lin T C, Hung C H, Chou Y L, Lin T C and Chou P T 2016 J. Phys. Chem. A 120 1020
[12] Liu S S, Zhao Y, Zhang C Z, Lin L L, Li Y Q and Song Y Z 2019 Spectrochim. Acta Part. A 219 164
[13] Ma H P, Liu N and Huang J D 2017 Sci. Rep. 7 331
[14] Liu S, Ma Y Z, Yang Y F, Liu S S, Li Y Q and Song Y Z 2018 Chin. Phys. B 27 023103
[15] Zhao J F, Chen J S, Liu J Y and Hoffmann M R 2015 Phys. Chem. Chem. Phys. 17 11990
[16] Huang J D and Ma H P 2018 Org. Chem. Front 5 2749
[17] Zhao J F, Chen J S, Cui Y L, Wang J, Xia L X, Dai Y M, Song P and Ma F C 2015 Phys. Chem. Chem. Phys. 17 1142
[18] Li Y O, Yang Y F and Ding Y 2017 Sci. Rep. 7 1574
[19] Ma H P, Chai S, Chen D Y and Huang J D 2017 IUCrJ. 4 695
[20] Li J, Li X D, Cheng S B, Song P and Zhao J F 2018 J. At. Mol. Sci. 9 1
[21] Song P, Guan B J, Zhou Q, Zhao M Y, Huang J D and Ma F C 2016 Sci. Rep. 6 35555
[22] Song Y Z, Liu S S, Lu J J, Zhang H, Zhang C Z and Du J 2019 Chin. Phys. B 28 093102
[23] Yang D P, Zhao J F, Jia M and Song X Y 2017 RSC Adv. 7 34034
[24] Huang J D, Zhao J F, Yu K, Huang X H, Cheng S B and Ma H P 2018 Acta Crystallorgr. B 74 705
[25] Song Y Z, Liu S, Ma Y Z, Yang Y F, Li Y Q and Xu J H 2018 J. Mol. Struct. 1173 341
[26] Zhao J F, Yao H, Liu J Y and Hoffmann M R 2015 J. Phys. Chem. A 119 681
[27] Wang L F, Wang Y, Zhao J and Zhao J F 2019 J. Phys. Org. Chem. 32 3954
[28] Liu S S, Pan J, Wei D M, Xu J H, Zhou Y and Song Y Z 2019 Can. J. Phys. 97 721
[29] Yang D P, Li P Y, Zheng R, Wang Y S and Lv J 2016 Theor. Chem. Acc 135 42
[30] Chen H, Zhao J F, Huang J D and Liang Y 2019 Phys. Chem. Chem. Phys. 21 7447
[31] Zhang Q L, Yang G, Song X Y, Zhao J F and Yang D P 2018 J. At. Mol. Sci. 9 7
[32] Lu X M, Zhai Y C, Zhang M X and Song Y Z 2018 J. Phys. Org. Chem. 31 3821
[33] Yi J C and Fang H 2018 Struct. Chem. 29 1341
[34] Zhao J F, Dong H, Yang H and Zheng Y J 2018 Org. Chem. Front. 5 2710
[35] Yang D P, Zhao J F, Yang G, Song N H, Zheng R and Wang Y S 2017 J. Mol. Liq 241 1003
[36] Li H, Ma L N, Yin H and Shi Y 2018 Chin. Phys. B 27 098201
[37] Ni M and Fang H 2019 Chem. Papers 73 1561
[38] Yi J C and Fang H 2017 J. Mol. Model 23 312
[39] Chang I J, Hwang K S and Chang S K 2017 Dyes Pigm. 137 69
[40] Frisch, M J, et al. 2009 Gaussian 09 Revision D. 01 Gaussian, Inc, Wallingford CT
[41] Lee C, Yang W T and Parr R G 1988 Phys. Rev. B 37 785
[42] Kolth W, Becke A D and Parr R G 1996 J. Phys. Chem. 100 12974
[43] Feller D 1996 J. Comput. Chem. 17 1571
[44] Mennucci B, Cances E and Tomasi J 1997 J. Phys. Chem. B 101 10506
[45] Cances E, Mennucci B and Tomasi J 1997 J. Chen. Phys. 107 3032
[46] Cammi R and Tomasi J 1995 J. Comput. Chem. 16 1449
[47] Johnson E R, Keinan S, Mori-Sanzhez P, Contreras-Garcia J, Cohen A J and Yang W T 2010 J. Am. Chem. Soc. 132 6498
[48] Zhou P W, Hoffmann M, Han K L and He G Z 2015 J. Phys. Chem. B 119 2125
[49] Ni M, Su S Y and Fang H 2019 Theor. Chem. Acc. 138 125
[50] Xiao D, Zhang G L, Wang H Y, Tang G Q and Chen W J 2000 Chin. Phys. Lett. 17 809
[51] Zhao G J and Han K L 2007 J. Phys. Chem. A 111 2469
[52] Zhou P W, Li P, Zhao Y L and Han K L 2019 J. Phys. Chem. Lett. 10 6929
[53] Yi J C and Fang H 2018 Photochem. Photobiol. 94 27
[54] Meng Q C, Yang S Q, Ren G H and Chu T S 2018 Chin. Phys. Lett. 35 098201
[55] Zhou P W and Han K L 2018 Acc. Chem. Res. 51 1681
[56] Zhao G J and Han K L 2008 J. Comput. Chem. 29 2010
[57] Zhao J F, Song P, Cui Y L, Liu X M, Sun S W, Hou S Y and Ma F C 2014 Spectrochim. Acta Part. A 131 282
[58] Sobolewski A L and Domcke W 1999 Phys. Chem. Chem. Phys. 1 3065
[59] Serrano-Andres L and Merchan M 2009 J. Photochem. Photobiol. C 10 21
[60] Saga Y, Shibata Y and Tamiaki H 2010 J. Photochem. Photobiol. C 11 15
[1] A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives
Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华). Chin. Phys. B, 2022, 31(3): 038202.
[2] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[3] Configuration interaction study on low-lying states of AlCl molecule
Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(5): 053101.
[4] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[5] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[6] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[7] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[8] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[9] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
[10] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
[11] Excited state intramolecular proton transfer mechanism of o-hydroxynaphthyl phenanthroimidazole
Shuang Liu(刘爽), Yan-Zhen Ma(马艳珍), Yun-Fan Yang(杨云帆), Song-Song Liu(刘松松), Yong-Qing Li(李永庆), Yu-Zhi Song(宋玉志). Chin. Phys. B, 2018, 27(2): 023103.
[12] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
[13] MRCI+Q study of the low-lying electronic states of CdF including spin—orbit coupling
Shu-Tao Zhao(赵书涛), Bing Yan(闫冰), Rui Li(李瑞), Shan Wu(武山), Qiu-Ling Wang(王秋玲). Chin. Phys. B, 2017, 26(2): 023105.
[14] Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state
Song Li(李松), Shan-Jun Chen(陈善俊), Yan Chen(陈艳), Peng Chen(陈朋). Chin. Phys. B, 2016, 25(3): 033101.
[15] Low-lying electronic states of CuN calculated by MRCI method
Shu-Dong Zhang(张树东), Chao Liu(刘超). Chin. Phys. B, 2016, 25(10): 103103.
No Suggested Reading articles found!