Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 057303    DOI: 10.1088/1674-1056/ab7e9e

Seeing Dirac electrons and heavy fermions in new boron nitride monolayers

Yu-Jiao Kang(康玉娇)1,2, Yuan-Ping Chen(陈元平)1,2, Jia-Ren Yuan(袁加仁)2, Xiao-Hong Yan(颜晓红)2, Yue-E Xie(谢月娥)1,2
1 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China;
2 Faculty of Science, Jiangsu University, Zhenjiang 212013, China
Abstract  Most three-dimensional (3D) and two-dimensional (2D) boron nitride (BN) structures are wide-band-gap insulators. Here, we propose two BN monolayers having Dirac points and flat bands, respectively. One monolayer is named as 5-7 BN that consists of five- and seven-membered rings. The other is a Kagome BN made of triangular boron rings and nitrogen dimers. The two structures show not only good dynamic and thermodynamic stabilities but also novel electronic properties. The 5-7 BN has Dirac points on the Fermi level, indicating that the structure is a typical Dirac material. The Kagome BN has double flat bands just below the Fermi level, and thus there are heavy fermions in the structure. The flat-band-induced ferromagnetism is also revealed. We analyze the origination of the band structures by partial density of states and projection of orbitals. In addition, a possible route to experimentally grow the two structures on some suitable substrates such as the PbO2 (111) surface and the CdO (111) surface is also discussed, respectively. Our research not only extends understanding on the electronic properties of BN structures, but also may expand the applications of BN materials in 2D electronic devices.
Keywords:  boron nitride      Dirac fermion      flat band      ferromagnetism  
Received:  15 February 2020      Revised:  05 March 2020      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.43.Cd (Theory and modeling)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874314) and the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ2377).
Corresponding Authors:  Yue-E Xie     E-mail:

Cite this article: 

Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥) Seeing Dirac electrons and heavy fermions in new boron nitride monolayers 2020 Chin. Phys. B 29 057303

[1] Pakdel A, Zhi C, Bando Y and Golberg D 2012 Mater. Today 15 256
[2] Xie C, Ma M, Liu C, Pan Y, Xiong M, He J, Gao G, Yu D, Xu B, Tian Y and Zhao Z 2017 J. Mater. Chem. C 5 5897
[3] Dai J, Wu X, Yang J and Zeng X C 2013 J. Phys. Chem. Lett. 4 3484
[4] Rubio A, Corkill J L and Cohen M L 1994 Phys. Rev. B 49 5081
[5] Han W, Bando Y, Kurashima K and Sato T 1998 Appl. Phys. Lett. 73 3085
[6] Meyer J C, Chuvilin A, Algara-Siller G, Biskupek J and Kaiser U 2009 Nano. Lett. 9 2683
[7] Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W and Zettl A 2009 Phys. Rev. B 80 155425
[8] Allen M J, Tung V C and Kaner R B 2010 Chem. Rev. 110 132
[9] Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R and Ruoff R S 2010 Adv. Mater. 22 3906
[10] Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C and Zhi C 2010 ACS Nano 4 2979
[11] Hu M L, Yu Z, Zhang K W, Sun L Z and Zhong J X 2011 J. Phys. Chem. C 115 8260
[12] Moradian R, Shahrokhi M, Sadat Charganeh S and Moradian S 2012 Physica E 46 182
[13] Geim A K 2009 Science 324 1530
[14] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[15] Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
[16] Zhou J, Wang Q, Sun Q and Jena P 2010 Phys. Rev. B 81 085442
[17] Li X, Wu X, Zeng X C and Yang J 2012 ACS Nano 6 4104
[18] Zeng H, Zhi C, Zhang Z, Wei X, Wang X, Guo W, Bando Y and Golberg D 2010 Nano Lett. 10 5049
[19] Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I and Ajayan P M 2010 Nano Lett. 10 3209
[20] Golberg D, Bando Y, Huang Y, Xu Z, Wei X, Bourgeois L, Wang M S, Zeng H, Lin J and Zhi C 2010 Isr. J. Chem. 50 405
[21] Wan H, Zhou B, Liao W and Zhou G 2013 J. Chem. Phys. 138 034705
[22] Liu Y, Wang G, Huang Q, Guo L and Chen X 2012 Phys. Rev. Lett. 108 225505
[23] Gu Q, Xing D and Sun J 2019 Chin. Phys. Lett. 36 097401
[24] Fan Q, Martin-Jimenez D, Ebeling D, Krug C K, Brechmann L, Kohlmeyer C, Hilt G, Hieringer W, Schirmeisen A and Gottfried J M 2019 J. Am. Chem. Soc. 141 17713
[25] Chen Y, Xu S, Xie Y, Zhong C, Wu C and Zhang S B 2018 Phys. Rev. B 98 035135
[26] Majidi R 2017 Theor. Chem. Acc. 136 109
[27] Wu C, Bergman D, Balents L and Das Sarma S 2007 Phys. Rev. Lett. 99 070401
[28] Bandyopadhyay A, Nandy A, Chakrabarti A and Jana D 2017 Phys. Chem. Chem. Phys. 19 21584
[29] Zhou M, Liu Z, Ming W, Wang Z and Liu F 2014 Phys. Rev. Lett. 113 236802
[30] Maruyama M, Cuong N T and Okada S 2016 Carbon 109 755
[31] Tasaki H 1992 Phys. Rev. Lett. 69 1608
[32] Wigner E 1934 Phys. Rev. 46 1002
[33] Mielke A 1991 J. Phys. A-Math. Gen. 24 L73
[34] Huang S, Xie Y, Zhong C and Chen Y 2018 J. Phys. Chem. Lett. 9 2751
[35] Shahrokhi M, Mortazavi B and Berdiyorov G R 2017 Solid State Commun. 253 51
[36] Li X D and Cheng X L 2018 Chem. Phys. Lett. 694 102
[37] Chern G W, Mellado P and Tchernyshyov O 2011 Phys. Rev. Lett. 106 207202
[38] Chen Y, Sun Y Y, Wang H, West D, Xie Y, Zhong J, Meunier V, Cohen M L and Zhang S B 2014 Phys. Rev. Lett. 113 085501
[39] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[40] Hammer B, Hansen L B and Norskov J K 1999 Phys. Rev. B 59 7413
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[43] Dai Y H, Liao L Z and Li D 2004 Numer. Algorithms 35 249
[44] NoséS 1984 J. Chem. Phys. 81 511
[45] Narita N, Nagai S, Suzuki S and Nakao K 1998 Phys. Rev. B 58 11009
[46] Zyuzin A A, Wu S and Burkov A A 2012 Phys. Rev. B 85 165110
[47] Turner A M, Zhang Y and Vishwanath A 2010 Phys. Rev. B 82 241102
[48] Sun K, Yao H, Fradkin E and Kivelson S A 2009 Phys. Rev. Lett. 103 046811
[49] Zhang H, Xie Y, Zhang Z, Zhong C, Li Y, Chen Z and Chen Y 2017 J. Phys. Chem. Lett. 8 1707
[50] White S R and Sham L J 1981 Phys. Rev. Lett. 47 879
[51] Nomura K and MacDonald A H 2006 Phys. Rev. Lett. 96 256602
[52] Murphy D W, Sunshine S, van Dover R B, Cava R J, Batlogg B, Zahurak S M and Schneemeyer L F 1987 Phys. Rev. Lett. 58 1888
[53] Filinov A V, Bonitz M and Lozovik Y E 2001 Phys. Rev. Lett. 86 3851
[54] Laughlin R B 1983 Phys. Rev. Lett. 50 1395
[55] Edelstein V M 1990 Solid State Commun. 73 233
[56] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotechnol. 10 227
[57] Lu X, Utama M I B, Lin J, Gong X, Zhang J, Zhao Y, Pantelides S T, Wang J, Dong Z, Liu Z, Zhou W and Xiong Q 2014 Nano Lett. 14 2419
[58] Zhukovskii Y F, Kotomin E A, Fuks D, Dorfman S, Marshall Stoneham A, Sychev O and Borstel G 2004 Appl. Surf. Sci. 226 298
[59] Ouahab A, Mottet C and Goniakowski J 2005 Phys. Rev. B 72 035421
[1] Superfluid states in α-T3 lattice
Yu-Rong Wu(吴玉容) and Yi-Cai Zhang(张义财). Chin. Phys. B, 2021, 30(6): 060306.
[2] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[3] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[4] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[5] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[6] Microstructure and ferromagnetism ofheavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[7] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
[8] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[9] Surface Majorana flat bands in j=3/2 superconductors with singlet-quintet mixing
Jiabin Yu(于家斌), Chao-Xing Liu(刘朝星). Chin. Phys. B, 2020, 29(1): 017402.
[10] Collapses-revivals phenomena induced by weak magnetic flux in diamond chain
Na-Na Chang(常娜娜), Wen-Quan Jing(景文泉), Yu Zhang(张钰), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2020, 29(1): 010306.
[11] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[12] Crystallographic and magnetic properties of van der Waals layered FePS3 crystal
Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮). Chin. Phys. B, 2019, 28(5): 056102.
[13] Unconventional chiral d-wave superconducting state in strained graphene
Feng Xu(徐峰), Lei Zhang(张磊). Chin. Phys. B, 2019, 28(11): 117403.
[14] Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature
Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣). Chin. Phys. B, 2019, 28(10): 107504.
[15] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
No Suggested Reading articles found!