Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 057303    DOI: 10.1088/1674-1056/ab7e9e

Seeing Dirac electrons and heavy fermions in new boron nitride monolayers

Yu-Jiao Kang(康玉娇)1,2, Yuan-Ping Chen(陈元平)1,2, Jia-Ren Yuan(袁加仁)2, Xiao-Hong Yan(颜晓红)2, Yue-E Xie(谢月娥)1,2
1 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China;
2 Faculty of Science, Jiangsu University, Zhenjiang 212013, China
Abstract  Most three-dimensional (3D) and two-dimensional (2D) boron nitride (BN) structures are wide-band-gap insulators. Here, we propose two BN monolayers having Dirac points and flat bands, respectively. One monolayer is named as 5-7 BN that consists of five- and seven-membered rings. The other is a Kagome BN made of triangular boron rings and nitrogen dimers. The two structures show not only good dynamic and thermodynamic stabilities but also novel electronic properties. The 5-7 BN has Dirac points on the Fermi level, indicating that the structure is a typical Dirac material. The Kagome BN has double flat bands just below the Fermi level, and thus there are heavy fermions in the structure. The flat-band-induced ferromagnetism is also revealed. We analyze the origination of the band structures by partial density of states and projection of orbitals. In addition, a possible route to experimentally grow the two structures on some suitable substrates such as the PbO2 (111) surface and the CdO (111) surface is also discussed, respectively. Our research not only extends understanding on the electronic properties of BN structures, but also may expand the applications of BN materials in 2D electronic devices.
Keywords:  boron nitride      Dirac fermion      flat band      ferromagnetism  
Received:  15 February 2020      Revised:  05 March 2020      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.43.Cd (Theory and modeling)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874314) and the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ2377).
Corresponding Authors:  Yue-E Xie     E-mail:

Cite this article: 

Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥) Seeing Dirac electrons and heavy fermions in new boron nitride monolayers 2020 Chin. Phys. B 29 057303

[1] Pakdel A, Zhi C, Bando Y and Golberg D 2012 Mater. Today 15 256
[2] Xie C, Ma M, Liu C, Pan Y, Xiong M, He J, Gao G, Yu D, Xu B, Tian Y and Zhao Z 2017 J. Mater. Chem. C 5 5897
[3] Dai J, Wu X, Yang J and Zeng X C 2013 J. Phys. Chem. Lett. 4 3484
[4] Rubio A, Corkill J L and Cohen M L 1994 Phys. Rev. B 49 5081
[5] Han W, Bando Y, Kurashima K and Sato T 1998 Appl. Phys. Lett. 73 3085
[6] Meyer J C, Chuvilin A, Algara-Siller G, Biskupek J and Kaiser U 2009 Nano. Lett. 9 2683
[7] Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W and Zettl A 2009 Phys. Rev. B 80 155425
[8] Allen M J, Tung V C and Kaner R B 2010 Chem. Rev. 110 132
[9] Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R and Ruoff R S 2010 Adv. Mater. 22 3906
[10] Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C and Zhi C 2010 ACS Nano 4 2979
[11] Hu M L, Yu Z, Zhang K W, Sun L Z and Zhong J X 2011 J. Phys. Chem. C 115 8260
[12] Moradian R, Shahrokhi M, Sadat Charganeh S and Moradian S 2012 Physica E 46 182
[13] Geim A K 2009 Science 324 1530
[14] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[15] Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
[16] Zhou J, Wang Q, Sun Q and Jena P 2010 Phys. Rev. B 81 085442
[17] Li X, Wu X, Zeng X C and Yang J 2012 ACS Nano 6 4104
[18] Zeng H, Zhi C, Zhang Z, Wei X, Wang X, Guo W, Bando Y and Golberg D 2010 Nano Lett. 10 5049
[19] Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I and Ajayan P M 2010 Nano Lett. 10 3209
[20] Golberg D, Bando Y, Huang Y, Xu Z, Wei X, Bourgeois L, Wang M S, Zeng H, Lin J and Zhi C 2010 Isr. J. Chem. 50 405
[21] Wan H, Zhou B, Liao W and Zhou G 2013 J. Chem. Phys. 138 034705
[22] Liu Y, Wang G, Huang Q, Guo L and Chen X 2012 Phys. Rev. Lett. 108 225505
[23] Gu Q, Xing D and Sun J 2019 Chin. Phys. Lett. 36 097401
[24] Fan Q, Martin-Jimenez D, Ebeling D, Krug C K, Brechmann L, Kohlmeyer C, Hilt G, Hieringer W, Schirmeisen A and Gottfried J M 2019 J. Am. Chem. Soc. 141 17713
[25] Chen Y, Xu S, Xie Y, Zhong C, Wu C and Zhang S B 2018 Phys. Rev. B 98 035135
[26] Majidi R 2017 Theor. Chem. Acc. 136 109
[27] Wu C, Bergman D, Balents L and Das Sarma S 2007 Phys. Rev. Lett. 99 070401
[28] Bandyopadhyay A, Nandy A, Chakrabarti A and Jana D 2017 Phys. Chem. Chem. Phys. 19 21584
[29] Zhou M, Liu Z, Ming W, Wang Z and Liu F 2014 Phys. Rev. Lett. 113 236802
[30] Maruyama M, Cuong N T and Okada S 2016 Carbon 109 755
[31] Tasaki H 1992 Phys. Rev. Lett. 69 1608
[32] Wigner E 1934 Phys. Rev. 46 1002
[33] Mielke A 1991 J. Phys. A-Math. Gen. 24 L73
[34] Huang S, Xie Y, Zhong C and Chen Y 2018 J. Phys. Chem. Lett. 9 2751
[35] Shahrokhi M, Mortazavi B and Berdiyorov G R 2017 Solid State Commun. 253 51
[36] Li X D and Cheng X L 2018 Chem. Phys. Lett. 694 102
[37] Chern G W, Mellado P and Tchernyshyov O 2011 Phys. Rev. Lett. 106 207202
[38] Chen Y, Sun Y Y, Wang H, West D, Xie Y, Zhong J, Meunier V, Cohen M L and Zhang S B 2014 Phys. Rev. Lett. 113 085501
[39] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[40] Hammer B, Hansen L B and Norskov J K 1999 Phys. Rev. B 59 7413
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[43] Dai Y H, Liao L Z and Li D 2004 Numer. Algorithms 35 249
[44] NoséS 1984 J. Chem. Phys. 81 511
[45] Narita N, Nagai S, Suzuki S and Nakao K 1998 Phys. Rev. B 58 11009
[46] Zyuzin A A, Wu S and Burkov A A 2012 Phys. Rev. B 85 165110
[47] Turner A M, Zhang Y and Vishwanath A 2010 Phys. Rev. B 82 241102
[48] Sun K, Yao H, Fradkin E and Kivelson S A 2009 Phys. Rev. Lett. 103 046811
[49] Zhang H, Xie Y, Zhang Z, Zhong C, Li Y, Chen Z and Chen Y 2017 J. Phys. Chem. Lett. 8 1707
[50] White S R and Sham L J 1981 Phys. Rev. Lett. 47 879
[51] Nomura K and MacDonald A H 2006 Phys. Rev. Lett. 96 256602
[52] Murphy D W, Sunshine S, van Dover R B, Cava R J, Batlogg B, Zahurak S M and Schneemeyer L F 1987 Phys. Rev. Lett. 58 1888
[53] Filinov A V, Bonitz M and Lozovik Y E 2001 Phys. Rev. Lett. 86 3851
[54] Laughlin R B 1983 Phys. Rev. Lett. 50 1395
[55] Edelstein V M 1990 Solid State Commun. 73 233
[56] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotechnol. 10 227
[57] Lu X, Utama M I B, Lin J, Gong X, Zhang J, Zhao Y, Pantelides S T, Wang J, Dong Z, Liu Z, Zhou W and Xiong Q 2014 Nano Lett. 14 2419
[58] Zhukovskii Y F, Kotomin E A, Fuks D, Dorfman S, Marshall Stoneham A, Sychev O and Borstel G 2004 Appl. Surf. Sci. 226 298
[59] Ouahab A, Mottet C and Goniakowski J 2005 Phys. Rev. B 72 035421
[1] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[2] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[3] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[4] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[5] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[6] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥). Chin. Phys. B, 2021, 30(7): 077103.
[7] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
[8] Superfluid states in α-T3 lattice
Yu-Rong Wu(吴玉容) and Yi-Cai Zhang(张义财). Chin. Phys. B, 2021, 30(6): 060306.
[9] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[10] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[11] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[12] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[13] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[14] Microstructure and ferromagnetism of heavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[15] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
No Suggested Reading articles found!