Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 054202    DOI: 10.1088/1674-1056/ab7b56
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Pulse shaping of bright-dark vector soliton pair

Yan Zhou(周延)1, Yuefeng Li(李月锋)1, Xia Li(李夏)2, Meisong Liao(廖梅松)2, Jingshan Hou(侯京山)3, Yongzheng Fang(房永征)3
1 School of Science, Shanghai Institute of Technology, Shanghai 201418, China;
2 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
3 School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
Abstract  We simulate pulse shaping of bright-dark vector soliton pair in an optical fiber system. Through changing input pulse parameters (amplitude ratio, projection angle, time delay, and phase difference), different kinds of pulse shapes and spectra can be generated. For input bright-dark vector soliton pair with the same central wavelength, "2+1"- and "2+2"-type pseudo-high-order bright-dark vector soliton pairs are achieved. While for the case of different central wavelengths, bright-dark vector soliton pairs with multiple pulse peaks/dips are demonstrated with appropriate pulse parameter setting.
Keywords:  bright-dark vector soliton      birefringence      polarization-locking      group-velocity-locking  
Received:  05 January 2020      Revised:  19 January 2020      Published:  05 May 2020
PACS:  42.25.Ja (Polarization)  
  42.25.Lc (Birefringence)  
  42.55.Wd (Fiber lasers)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0504500) and the National Natural Science Foundation of China (Grant No. 51672177).
Corresponding Authors:  Yan Zhou     E-mail:  yzhou@sit.edu.cn

Cite this article: 

Yan Zhou(周延), Yuefeng Li(李月锋), Xia Li(李夏), Meisong Liao(廖梅松), Jingshan Hou(侯京山), Yongzheng Fang(房永征) Pulse shaping of bright-dark vector soliton pair 2020 Chin. Phys. B 29 054202

[1] Song Y F, Shi X J, Wu C F, Tang D Y and Zhang H 2019 Appl. Phys. Rev. 6 021313
[2] Luo Z C, Liu M, Luo A P and Xu W C 2018 Chin. Phys. B 27 094215
[3] Zhou Y, Zhang R L, Li X, Kuan P W, He D Y, Hou J S, Liu Y F, Fang Y Z and Liao M S 2019 Chin. Phys. B 28 094203
[4] Chen S, Xu Y, Cai Y, Shen J P and Zhang Z X 2019 J. Opt. Soc. Am. B 36 2688
[5] Yin K, Li Y M, Wang Y B, Zheng X and Jiang T 2019 Chin. Phys. B 28 124203
[6] Wang Z Q, Zhan L, Fang X and Luo H 2017 J. Opt. Soc. Am. B 34 2325
[7] Chong A, Wright L G and Wise F W 2015 Rep. Prog. Phys. 78 113901
[8] Duan L N, Wen J, Fan W and Wang W 2017 Chin. Phys. B 26 104205
[9] Zhou Y, Zhang R L, Chen P, Liu Y F, Fang Y Z, Wang T X, Li X, Kuan P W and Liao M S 2019 Laser Phys. 29 055101
[10] Luo Z C, Lin Z B, Li J Y, Zhu P F, Ning Q Y, Xing X B, Luo A P and Xu W C 2014 Chin. Phys. B 23 064203
[11] Zheng Y, Tian J R, Dong Z K, Xu R Q, Li K X and Song Y R 2017 Chin. Phys. B 26 074212
[12] Wang H C, Wei Y D, Huang X Y, Chen G H and Ye H 2018 Chin. Phys. B 27 044203
[13] Zhao J Q, Zhou J, Li L, Zhao L M, Tang D Y, Shen D Y and Su L 2019 Opt. Lett. 44 2414
[14] Xiong Z J, Xu Q and Ling L M 2019 Chin. Phys. B 28 120201
[15] Liu B W, Luo Y Y, Xiang Y, Xiao X P, Sun Q Z, Liu D M and Shum P P 2018 Opt. Express 26 27461
[16] Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905
[17] Liu X M and Pang M 2019 Laser Photon. Rev. 13 1800333
[18] Liu X M and Cui Y D 2019 Adv. Photon. 1 016003
[19] Liu X M, Popa D and Akhmediev N 2019 Phys. Rev. Lett. 123 093901
[20] Balla P and Agrawal G P 2018 J. Opt. Soc. Am. B 35 2302
[21] Cundiff S T, Collings B C, Akhmediev N N, Soto-Crespo J M, Bergman K and Knox W H 1999 Phys. Rev. Lett. 82 3988
[22] Collings B C, Cundiff S T, Akhmediev N N, Soto-Crespo J M, Bergman K, Knox W H 2000 J. Opt. Soc. Am. B 17 354
[23] Tang D Y, Zhang H, Zhao L M and Wu X 2008 Phys. Rev. Lett. 101 153904
[24] Jin X X, Wu Z C, Li L, Zhang Q, Tang D Y, Shen D Y, Fu S N, Liu D M and Zhao L M 2016 IEEE Photon. J. 8 1501206
[25] Wang X, Li L, Geng Y, Wang H X, Su L and Zhao L M 2018 Appl. Opt. 57 746
[26] Xiang Y, Luo Y Y, Liu B W, Xia R, Shum P P, Tang X H, Liu D M and Sun Q Z 2019 J. Lightwave Technol. 37 5108
[27] Zhu S N, Wu Z C, Fu S N and Zhao L M 2018 Appl. Opt. 57 2064
[28] Zhao L M, Tang D Y and Wu X 2008 Opt. Express 16 10053
[29] Liu M, Luo A P, Luo Z C and Xu W C 2017 Opt. Lett. 42 330
[30] Willner A E, Wang J and Huang H 2012 Science 337 655
[31] Su Y L, Feng H, Hu H, Wang W, Duan T, Wang Y S, Si J H, Xie X P, Yang H N and Huang X N 2019 Chin. Phys. B 28 024216
[32] Ma J, Shao G D, Song Y F, Zhao L M, Xiang Y J, Shen D Y, Richardson M and Tang D Y 2019 Opt. Lett. 44 2185
[33] Hu X, Guo J, Shao G D, Song Y F, Yoo S W, Malomed B A and Tang D Y 2019 Opt. Express 27 18311
[34] Zhou Y, Li Y F, Zhang R L, Wang T X, Bi W J, Li X, Kuan P W, Fang Y Z and Liao M S 2019 Optik 194 163132
[35] Zhou Y, Li Y F, Li X, Zhao G Y, Hou J S, Zou J, Fang Y Z and Liao M S 2020 Optik 203 163925
[1] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[2] Effect of thermally induced birefringence on high power picosecond azimuthal polarization Nd:YAG laser system
Hongpan Peng(彭红攀), Ce Yang(杨策), Shang Lu(卢尚), Ning Ma(马宁), Meng Chen(陈檬). Chin. Phys. B, 2019, 28(2): 024205.
[3] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
[4] Polarization-based range-gated imaging in birefringent medium:Effect of size parameter
Heng Tian(田恒), Jing-Ping Zhu(朱京平), Shu-Wen Tan(谭树文), Jing-Jing Tian(田晶晶), Yun-Yao Zhang(张云尧), Xun Hou(侯洵). Chin. Phys. B, 2018, 27(12): 124203.
[5] Birefringence via Doppler broadening and prevention of information hacking
Humayun Khan, Muhammad Haneef, Bakhtawar. Chin. Phys. B, 2018, 27(1): 014201.
[6] Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity
Min Liu(刘敏), Jingyun Hou(侯静云), Xu Yang(杨虚), Bingyue Zhao(赵昺玥), Ping Shum. Chin. Phys. B, 2018, 27(1): 014206.
[7] Electro-optical properties of high birefringence liquid crystal compounds with isothiocyanate and naphthyl group
Zeng-Hui Peng(彭增辉), Qi-Dong Wang(王启东), Shao-Xin Wang(王少鑫), Li-Shuang Yao(姚丽双), Yong-Gang Liu(刘永刚), Li-Fa Hu(胡立发), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Li Xuan(宣丽). Chin. Phys. B, 2017, 26(9): 094210.
[8] Modulation instabilities in randomly birefringent two-mode optical fibers
Jin-Hua Li(李金花), Hai-Dong Ren(任海东), Shi-Xin Pei(裴世鑫), Zhao-Lou Cao(曹兆楼), Feng-Lin Xian(咸冯林). Chin. Phys. B, 2016, 25(12): 124208.
[9] Coupled thermal-optic effects and electrical modulation mechanism of birefringence crystal with Gaussian laser incidence
Zhou Ji, He Zhi-Hong, Ma Yu, Dong Shi-Kui. Chin. Phys. B, 2015, 24(9): 094203.
[10] Drift effect on vacuum birefringence in a strong electric and magnetic field
Huang Yong-Sheng, Wang Nai-Yan, Tang Xiu-Zhang. Chin. Phys. B, 2015, 24(3): 034201.
[11] Design on a highly birefringent and nonlinear photonic crystal fiber in the C waveband
Li Duan-Ming, Zhou Gui-Yao, Xia Chang-Ming, Wang Chao, Yuan Jin-Hui. Chin. Phys. B, 2014, 23(4): 044209.
[12] Investigation of the mode splitting induced by electro-optic birefringence in a vertical-cavity surface-emitting laser by polarized electroluminescence
Zhang Jie, Yu Jin-Ling, Cheng Shu-Ying, Lai Yun-Feng, Chen Yong-Hai. Chin. Phys. B, 2014, 23(2): 027304.
[13] Homogeneity analysis of sculptured thin films deposited in symmetric style through glancing angle deposition technique
Wang Bin, Qi Hong-Ji, Sun Wei, He Jun, Zhao Jiao-Ling, Wang Hu, Hou Yong-Qiang. Chin. Phys. B, 2014, 23(11): 117801.
[14] Designing of a polarization beam splitter for the wavelength of1310 nm on dual-core photonic crystal fiber with high birefringence and double-zero dispersion
Bao Ya-Jie, Li Shu-Guang, Zhang Wan, An Guo-Wen, Fan Zhen-Kai. Chin. Phys. B, 2014, 23(10): 104218.
[15] Broadband tunable optical amplification based on modulation instability characteristic of high-birefringence photonic crystal fibers
Wang He-Lin, Yang Ai-Jun, Leng Yu-Xin. Chin. Phys. B, 2013, 22(7): 074208.
No Suggested Reading articles found!