Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 044209    DOI: 10.1088/1674-1056/23/4/044209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design on a highly birefringent and nonlinear photonic crystal fiber in the C waveband

Li Duan-Ming (李端明)a, Zhou Gui-Yao (周桂耀)a b, Xia Chang-Ming (夏长明)a, Wang Chao (王超)b, Yuan Jin-Hui (苑金辉)a
a Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China;
b State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Abstract  In this paper, a novel photonic crystal fiber (PCF) with high birefringence and nonlinearity is designed. The characteristics of birefringence, dispersion and nonlinearity are studied by using the full-vector finite element method (FVFEM). The numerical results show that the phase birefringence and nonlinear coefficient of PCF can be up to 4.51×10-3 and 32.8972 W-1·km-1 at 1.55 μm, respectively. The proposed PCF could be found to have important applications in the polarization-dependent nonlinear optics such as the pulse compress and reshaping in the C waveband.
Keywords:  high birefringence      nonlinear coefficient      zero dispersion wavelength      full-vector finite element method  
Received:  19 May 2013      Revised:  25 June 2013      Accepted manuscript online: 
PACS:  42.81.Gs (Birefringence, polarization)  
  42.65.-k (Nonlinear optics)  
  42.81.-i (Fiber optics)  
Fund: Project partly supported by the State Major Basic Research Development Program of China (Grant No. 2010CB327604) and the National Natural Science Foundation of China (Grant No. 61377100).
Corresponding Authors:  Zhou Gui-Yao     E-mail:  zguiyao@163.com
About author:  42.81.Gs; 42.65.-k; 42.81.-i

Cite this article: 

Li Duan-Ming (李端明), Zhou Gui-Yao (周桂耀), Xia Chang-Ming (夏长明), Wang Chao (王超), Yuan Jin-Hui (苑金辉) Design on a highly birefringent and nonlinear photonic crystal fiber in the C waveband 2014 Chin. Phys. B 23 044209

[1] Knight J C, Birks T A, Russell P S J and Atkin D M 1996 Opt. Lett. 21 1547
[2] Saitoh K, Koshiba M, Hasegawa T and Sasaoka E 2003 Opt. Express 11 843
[3] Xiao L M, Birks T A and Loh W H 2011 Opt. Lett. 36 4662
[4] Knight J C 2003 Nature 424 847
[5] Ortigosa-Blanch A, Knight J C, Wadsworth W J, Arriaga J, Mangan B J, Birks T A and Rueesll P S J 2000 Opt. Lett. 25 1325
[6] Ju J, Jin W and Demokan M S 2003 IEEE Photon. Technol. Lett. 15 1375
[7] Tatsuya K, Yoshinori N, Kazuya A, Taito K, Shubi F K, Abdur Razzak S M, Begum F, Shinya N and Hiroki H 2010 Opt. Rev. 17 61
[8] Finazzi V, Monro T M and Richardson D J 2003 J. Opt. Soc. Am. B 20 1427
[9] Saitoh K, Florous N and Koshiba M 2005 Opt. Express 13 8365
[10] Zografopoulos D C, Vázquez C, Kriezis E E and Yioultsis T V 2011 Opt. Express 19 21680
[11] Xu Q, Miao R C and Zhang Y N 2013 Optik 124 2269
[12] Xia C M, Zhou G Y, Han Y and Hou L T 2011 Chin. Opt. Lett. 9 100609
[13] Tamura K, Ippen E P, Haus H A and Nelson L E 1993 Opt. Lett. 18 1080
[14] Noda J, Okamoto K and Sasaki Y 1986 J. Lightwave Technol. 4 1071
[15] Saitoh K and Koshiba M 2004 Opt. Express 12 2027
[16] Poli F, Adami F, Foroni M, Rosa L, Cucinotta A and Selleri S 2005 Appl. Phys. B 81 251
[17] Ferrando A, Silvestre E, Andres P, Miret J and Andres M 2001 Opt. Express 9 687
[18] Hansen K P, Jensen J R, Jacobsen C, Simonsen H R, Jes Broeng, Skovgaard P M W and Petersson A 2002 OFC, Post Deadline FA9-1
[19] Yamamoto T, Kubota H, Kawanishi S, Tanaka M and Yamaguchi S 2003 Opt. Express 11 1537
[20] Zhang Y N 2011 Appl. Opt. 50 E125
[21] Olyaee S, Taghipour F and Izadpanah M 2011 Front. Optoelectron. China 4 420
[22] Zhang Y N, Ren L Y, Gong Y K, Li X H, Wang L R and Sun C D 2010 Appl. Opt. 49 3208
[23] Kakarantzas G, Ortigosa-Blanch A, Birks T A, Rusell P S J, Farr L, Couny F and Managan B J 2003 Opt. Lett. 28 158
[24] Xia C M, Zhou G Y, Han Y, Liu Z L and Hou L T 2011 Acta Phys. Sin. 60 094213 (in Chinese)
[1] Inversion method of bubble size distribution based on acoustic nonlinear coefficient measurement
Jie Shi(时洁), Yulin Liu(刘宇林), Shengguo Shi(时胜国), Anding Deng(邓安定), Hongdao Li(李洪道). Chin. Phys. B, 2020, 29(8): 084301.
[2] Electro-optical properties of high birefringence liquid crystal compounds with isothiocyanate and naphthyl group
Zeng-Hui Peng(彭增辉), Qi-Dong Wang(王启东), Shao-Xin Wang(王少鑫), Li-Shuang Yao(姚丽双), Yong-Gang Liu(刘永刚), Li-Fa Hu(胡立发), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Li Xuan(宣丽). Chin. Phys. B, 2017, 26(9): 094210.
[3] Zero dispersion wavelength and dispersion slope control of hollow-core photonic bandgap fibres
Zhang Hu(张虎), Yang Bo-Jun(杨伯君), Liu Yu-Min(刘玉敏), Wang Qiu-Guo(王秋国), Yu Li(于丽), and Zhang Xiao-Guang(张晓光). Chin. Phys. B, 2009, 18(3): 1116-1122.
No Suggested Reading articles found!