ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Trajectory engineering via a space-fractional Schrödinger equation with dynamic linear index potential |
Yunji Meng(孟云吉)1, Youwen Liu(刘友文)2, Haijiang Lv(吕海江)1 |
1 School of Information Engineering, Huangshan University, Huangshan 245041, China; 2 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China |
|
|
Abstract We theoretically and numerically study the propagation dynamics of a Gaussian beam modeled by the fractional Schrödinger equation with different dynamic linear potentials. For the limited case α=1 (α is the Lévy index) in the momentum space, the beam suffers a frequency shift which depends on the applied longitudinal modulation and the involved chirp. While in the real space, by precisely controlling the linear chirp, the beam will exhibit two different evolution characteristics: one is the zigzag trajectory propagation induced by multi-reflection occurring at the zeros of spatial spectrum, the other is diffraction-free propagation. Numerical simulations are in full accordance with the theoretical results. Increase of the Lévy index not only results in the drift of those turning points along the transverse direction, but also leads to the delocalization of the Gaussian beam.
|
Received: 09 October 2019
Revised: 26 December 2019
Accepted manuscript online:
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.25.Fx
|
(Diffraction and scattering)
|
|
42.30.Kq
|
(Fourier optics)
|
|
Fund: Project supported by the Natural Science Research Project of Anhui Provincal Education Department of China (Grant Nos. KJHS2018B01 and KJ2018A0407), the National Natural Science Foundation of China (Grant No. 11804112), the Natural Science Foundation of Anhui Province of China (Grant No. 1808085QA22), and Start-up Fund of Huangshan University, China (Grant No. 2015xkjq001). |
Corresponding Authors:
Yunji Meng
E-mail: meng_yunji@msn.com
|
Cite this article:
Yunji Meng(孟云吉), Youwen Liu(刘友文), Haijiang Lv(吕海江) Trajectory engineering via a space-fractional Schrödinger equation with dynamic linear index potential 2020 Chin. Phys. B 29 054201
|
[1] |
Dai C Q, Wang Y Y, Fan Y and Yu D G 2018 Nonlinear Dyn. 92 1351
|
[2] |
Dai C Q, Fan Y and Wang Y Y 2019 Nonlinear Dyn. 98 489
|
[3] |
Wang Y Y, Dai C Q, Xu Y Q, Zheng J and Fan Y 2018 Nonlinear Dyn. 92 1261
|
[4] |
Yan Y Y and Liu W J 2019 Appl. Math. Lett. 98 171
|
[5] |
Peschel U, Pertsch T and Lederer F 1998 Opt. Lett. 23 1701
|
[6] |
Trompeter H, Pertsch T, Lederer F, Michaelis D, Streppel U, Brauer A and Peschel U 2006 Phys. Rev. Lett. 96 023901
|
[7] |
Makris K G, Christodoulides D N, Peleg O, Segev M and Kip D 2008 Opt. Express 16 10309
|
[8] |
Dreisow F, Szameit A, Heinrich M, Nolte S, Tünnermann A, Ornigotti M and Longhi S 2009 Phys. Rev. A 79 055802
|
[9] |
Della Valle G, Savoini M, Ornigotti M, Laporta P, Foglietti V, Finazzi M, Duo L and Longhi S 2009 Phys. Rev. Lett. 102 180402
|
[10] |
Szameit A, Kartashov Y V, Dreisow F, Heinrich M, Pertsch. T, Nolte S, Tünnermann A, Vysloukh V A, Lederer F and Torner L 2009 Phys. Rev. Lett. 102 153901
|
[11] |
Szameit A, Garanovich I L, Heinrich M, Sukhorukov A A, Dreisow F, Pertsch T, Nolte S, Tünnermann A and Kivshar Y S 2008 Phys. Rev. Lett. 101 203902
|
[12] |
Ablowitz M J and Musslimani Z H 2001 Phys. Rev. Lett. 87 254102
|
[13] |
Szameit A, Garanovich I L, Heinrich M, Minovich A, Dreisow F, Sukhorukov A A, Pertsch. T, Neshev D N, Nolte S, Krolikowski W, Tünnermann A, Mitchell A and Kivshar Y S 2008 Phys. Rev. A 78 031801
|
[14] |
Matuszewski M, Garanovich I L and Sukhorukov A A 2010 Phys. Rev. A 81 043833
|
[15] |
Garanovich I L, Longhi S, Sukhorukov A A and Kivshar Y S 2012 Phys. Reports. 518 1
|
[16] |
Wen J M, Zhang Y and Xiao M 2013 Adv. Opt. Photon. 5 83
|
[17] |
Rokhinson L P, Liu X Y and Furdyna J K 2012 Nat. Phys. 8 795
|
[18] |
Laskin N 2002 Phys. Rev. E 66 056108
|
[19] |
Dong J P and Xu M Y 2007 J. Math. Phys. 48 072105
|
[20] |
Longhi S 2015 Opt. Lett. 40 1117
|
[21] |
Zhang Y Q, Liu X, Belić M R, Zhong W P, Zhang Y P and Xiao M 2015 Phys. Rev. Lett. 115 180403
|
[22] |
Zhang Y Q, Zhong H, Belić M R, Zhu Y, Zhong W, Zhang Y P, Christodoulides D N and Xiao M 2016 Laser. Photon. Rev. 10 526
|
[23] |
Zhang Y Q, Zhong H, Belić M R, Ahmed N, Zhang Y P and Xiao M 2016 Sci. Rep. 6 23645
|
[24] |
Zhang Y Q, Wang R, Zhong H, Zhang J, Belić M R and Zhang Y P 2017 Sci. Rep. 7 17872
|
[25] |
Huang C M and Dong L W 2017 Sci. Rep. 7 5442
|
[26] |
Huang C M, Shang C, Li J, Dong L W and Ye F W 2019 Opt. Express 27 6259
|
[27] |
Huang X W, Deng Z X and Fu X Q 2017 J. Opt. Soc. Am. B 34 976
|
[28] |
Huang C M and Dong L W 2016 Opt. Lett. 41 5636
|
[29] |
Yao X K and Liu X M 2018 Photon. Research. 6 875
|
[30] |
Xiao J, Tian Z X, Huang C M and Dong L W 2018 Opt. Express. 26 2650
|
[31] |
Yao X K and Liu X M 2018 Opt. Lett. 43 5749
|
[32] |
Wang Q, Li J Z, Zhang L F and Xie W X 2018 Europhys. Lett. 122 64001
|
[33] |
Zhang Y Q, Wang R, Zhong H, Zhang J W, Belić M R and Zhang Y P 2017 Opt. Express. 25 32401
|
[34] |
Zhang F, Wang Y and Li L 2018 Opt. Express 26 23740
|
[35] |
Efremidis N K 2011 Opt. Lett. 26 3006
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|