Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 046601    DOI: 10.1088/1674-1056/ab7743
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular dynamics simulation of thermal conductivity of silicone rubber

Wenxue Xu(徐文雪)1, Yanyan Wu(吴雁艳)2, Yuan Zhu(祝渊)2, Xin-Gang Liang(梁新刚)1
1 School of Aerospace Engineering, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China;
2 College of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  Silicone rubber is widely used as a kind of thermal interface material (TIM) in electronic devices. However few studies have been carried out on the thermal conductivity mechanism of silicone rubber. This paper investigates the thermal conductivity mechanism by non-equilibrium molecular dynamics (NEMD) in three aspects: chain length, morphology, and temperature. It is found that the effect of chain length on thermal conductivity varies with morphologies. In crystalline state where the chains are aligned, the thermal conductivity increases apparently with the length of the silicone-oxygen chain, the thermal conductivity of 79 nm-long crystalline silicone rubber could reach 1.49 W/(m·K). The thermal conductivity of amorphous silicone rubber is less affected by the chain length. The temperature dependence of thermal conductivity of silicone rubbers with different morphologies is trivial. The phonon density of states (DOS) is calculated and analyzed. The results indicate that crystalline silicone rubber with aligned orientation has more low frequency phonons, longer phonon MFP, and shorter conducting path, which contribute to a larger thermal conductivity.
Keywords:  silicone rubber      chain length      thermal conductivity      molecular dynamics simulation  
Received:  18 December 2019      Revised:  09 February 2020      Published:  05 April 2020
PACS:  66.10.cd (Thermal diffusion and diffusive energy transport)  
  66.30.hk (Polymers)  
  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
Fund: Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51621062) and the National Natural Science Foundation of China (Grant No. 51802144).
Corresponding Authors:  Xin-Gang Liang     E-mail:  liangxg@tsinghua.edu.cn

Cite this article: 

Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚) Molecular dynamics simulation of thermal conductivity of silicone rubber 2020 Chin. Phys. B 29 046601

[1] Li Q, Liu H B and Zhu M B 2006 Electron. Proc. Technol. 27 165 (in Chinese)
[2] Fu G C, Gao Z X, Wan Z Q and Zou H 2004 Electro. Mech. Eng. 20 13 (in Chinese)
[3] Yin H B and Gao X N 2013 Guangdong Chem. Ind. 40 67 (in Chinese)
[4] Yang B C, Chen W Y, Zeng L and Hu Y D 2006 Annual Electronic Components Conference, August 15-19, 2006 Xining, China, p. 111
[5] Lei H J, Wang M L and Gong W F 2006 Henan Chem. Ind. 23 20 (in Chinese)
[6] Kemaloglu S, Ozkoc G and Aytac A 2010 Thermochim. Acta 499 40
[7] Chen J, Wang X G and Zhang H Y 2012 Appl. Mech. Mater. 251 338
[8] Song J N, Chen C B and Yong Z 2018 Compos. Part. A 105 1
[9] Wang J B, Bao Y B, Li Q Y and Wu C F 2012 Acta Mater. Compositae Sin. 29 6 (in Chinese)
[10] Mu Q H, Feng S Y and Diao G Z 2007 Polym. Compos. 28 125
[11] Pan D H, Liu M, Meng Y and Qi S C 2004 Chin. Rubber Ind. 51 534 (in Chinese)
[12] Mao J H 2014 Research on Preparation and Performance of Conductive Silicone Rubber for High-power LED Heat Dissipation (MS dissertation) (Chongqing: Chongqing University) (in Chinese)
[13] Gao B Z, Xu J Z, Peng J J, Kang F Y, Du H D, Li J, Chiang S W, Xu C J, Hu N and Ning X S 2015 Thermochim. Acta 614 1
[14] Han X W 2006 Preparation and property study of thermal-conductive silicone rubber (MS dissertation) (Hangzhou: Zhejiang University) (in Chinese)
[15] Sim L C, Ramanan S R, Ismail H, Seetharamu K N and Goh T J 2005 Thermochim. Acta 430 155
[16] Lu Y L, Wang J Y, Wang X B, Liu L, Tian M, Guan X Y and Zhang L Q 2018 Polym. Compos. 39 1364
[17] Mou Q H and Feng D Y 2008 Patent CHN 101284925 [2008-10-15] (in Chinese)
[18] Chen F 2008 Patent CHN 101168620 [2008-04-30] (in Chinese)
[19] Luo T F, Esfarjani K, Shiomi J C, Henry A and Chen G 2011 J. Appl. Phys. 109 074321
[20] Liu J and Yang R G 2012 Phys. Rev. B 86 104307
[21] Mark J 1999 Polymer Data Handbook (New York: Oxford University Press) p. 417
[22] Cao B Y, Kong J, Xu Y, Yung K L and Cai A 2013 Heat Transfer Eng. 34 131
[23] Xu Y F, Kraemer D, Song B, Jiang Z, Zhou J W, Loomis J, Wang J J, Li M D, Ghasemi H, Huang X P, Li X B and Chen G 2019 Nat. Commun. 10 1771
[24] Feng X L, Li Z X and Guo Z Y 2001 J. Eng. Thermophys. 22 195 (in Chinese)
[25] Algaer E A and Müller-Plathe F 2012 Soft Mater. 10 42
[26] Terao T, Lussetti E and Müller-Plathe F 2007 Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 75 057701
[27] Müller Plathe F 1997 J. Chem. Phys. 106 6082
[28] Müller-Plathe F and Reith D 1999 Comput. Theor. Polym. Sci. 9 203
[29] Ikeshoji T and Hafskjold B 1994 Mol. Phys. 81 251
[30] Wirnsberger P, Frenkel D and Dellago C 2015 J. Chem. Phys. 143 124104
[31] Zhang M Y, Wang R H, Lin Y P, Li S M, Fu Y Z and Liu Y Q 2015 Polym. Mater.: Sci. Eng. 31 68 (in Chinese)
[32] Sun H 1995 Macromol. 28 701
[33] Sun H and Rigby D 1997 Spectrochim. Acta Part. A 53 1301
[34] Sun H, Jin Z and Yang C 2016 J. Mol. Model. 22 47
[35] https://lammps.sandia.gov/
[36] Hockney R W and Eastwood J W 1981 Computer simulation using particles (Bristol: Institute of Physics Publishing) p. 1
[37] Gronbechjensen N, Hayre N R and Farago O 2014 Comput. Phys. Commun. 185 524
[38] Schneider T and Stoll E P 1978 Phys. Rev. B 17 1302
[39] https://www.dow.com/en-us.html
[40] https://wenku.baidu.com/view/501a46efaeaad1f346933fcf.html
[41] Schelling P K, Phillpot S R and Keblinski P 2002 Phys. Rev. B 65 144306
[42] Gao Y F and Meng Q Y 2010 Acta Matall Sin. 46 1244 (in Chinese)
[43] Lin Y P, Zhang M Y, Gao Y F, Mei L Y, Fu Y Z and Liu Y Q 2014 Acta Polym. Sin. 6 789 (in Chinese)
[44] Wei Z Y, Ni Z H, Bi K D, Chen M H and Chen Y F 2011 Carbon 49 2653
[45] Ju S H, Liang X G and Xu X H 2011 J. Appl. Phys. 110 054318
[46] Ju S H and Liang X G 2012 J. Appl. Phys. 112 064305
[47] Dove. T 1994 Introduction to lattice dynamics (Cambridge: Cambridge University Press) p. 813
[48] Heino P 2007 Eur. Phys. J. B 60 171
[49] Kong L T 2011 Comput. Phys. Commun. 182 2201
[50] Kong L T and Bartels G 2009 Comput. Phys. Commun. 180 1004
[51] Campañá C and Mueser M 2006 Phys. Rev. B 74 075420
[52] Schelling P K, Phillpot S R and Keblinski P 2002 Appl. Phys. Lett. 80 2484
[53] Ju S H and Liang X G 2013 J. Appl. Phys. 113 053513
[1] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[2] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[3] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[4] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[5] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[6] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[7] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[8] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[9] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[10] Fractional variant of Stokes-Einstein relation in aqueous ionic solutions under external static electric fields
Gan Ren(任淦), Shikai Tian(田时开). Chin. Phys. B, 2020, 29(3): 036101.
[11] Tuning thermal transport via phonon localization in nanostructures
Dengke Ma(马登科), Xiuling Li(李秀玲), and Lifa Zhang(张力发). Chin. Phys. B, 2020, 29(12): 126502.
[12] Lattice thermal conductivity of β12 and χ3 borophene
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰). Chin. Phys. B, 2020, 29(12): 126503.
[13] Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chao-Yu He(何朝宇), Jin Li(李金), Chun-Xiao Zhang(张春小), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2020, 29(11): 118401.
[14] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[15] Find slow dynamic modes via analyzing molecular dynamics simulation trajectories
Chuanbiao Zhang(张传彪) and Xin Zhou(周昕)†. Chin. Phys. B, 2020, 29(10): 108706.
No Suggested Reading articles found!