Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 030504    DOI: 10.1088/1674-1056/ab7441
GENERAL Prev   Next  

Dynamical response of a neuron-astrocyte coupling system under electromagnetic induction and external stimulation

Zhi-Xuan Yuan(袁治轩), Pei-Hua Feng(冯沛华), Meng-Meng Du(独盟盟), Ying Wu(吴莹)
State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Previous studies have observed that electromagnetic induction can seriously affect the electrophysiological activity of the nervous system. Considering the role of astrocytes in regulating neural firing, we studied a simple neuron-astrocyte coupled system under electromagnetic induction in response to different types of external stimulation. Both the duration and intensity of the external stimulus can induce different modes of electrical activity in this system, and thus the neuronal firing patterns can be subtly controlled. When the external stimulation ceases, the neuron will continue to fire for a long time and then reset to its resting state. In this study, “delay” is defined as the delayed time from the firing state to the resting state, and it is highly sensitive to changes in the duration or intensity of the external stimulus. Meanwhile, the self-similarity embodied in the aforementioned sensitivity can be quantified by fractal dimension. Moreover, a hysteresis loop of calcium activity in the astrocyte is observed in the specific interval of the external stimulus when the stimulus duration is extended to infinity, since astrocytic calcium or neuron electrical activity in the resting state or during periodic oscillation depends on the initial state. Finally, the regulating effect of electromagnetic induction in this system is considered. It is clarified that the occurrence of “delay” depends purely on the existence of electromagnetic induction. This model can reveal the dynamic characteristics of the neuron-astrocyte coupling system with magnetic induction under external stimulation. These results can provide some insights into the effects of electromagnetic induction and stimulation on neuronal activity.
Keywords:  delay      fractal      bistability      electromagnetic induction  
Received:  23 September 2019      Revised:  05 January 2020      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  64.70.qj (Dynamics and criticality)  
  87.19.L- (Neuroscience) (Glia)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11772242) and China Postdoctoral Science Foundation (Grant No. 2018M631140).
Corresponding Authors:  Ying Wu     E-mail:

Cite this article: 

Zhi-Xuan Yuan(袁治轩), Pei-Hua Feng(冯沛华), Meng-Meng Du(独盟盟), Ying Wu(吴莹) Dynamical response of a neuron-astrocyte coupling system under electromagnetic induction and external stimulation 2020 Chin. Phys. B 29 030504

[1] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[2] Morris C and Lecar H 1981 Biophys. J. 35 193
[3] Fitzhugh R 1960 J. Gen. Physiol. 43 867
[4] Hindmarsh J L and Rose R M 1982 Nature 296 162
[5] Zhao Z G and Gu H G 2017 Sci. Rep. 7 1
[6] Bo L, Liu S Q and Liu X L, et al. 2016 Int. J. Bifur. Chaos 26 1650090
[7] Gu H G, Zhao Z G and Bing J, et al. 2015 Plos One 10 e0121028
[8] Wang H X, Wang Q Y and Zheng Y H 2014 Sci. China: Technol. Sci. 57 872
[9] Zhao Z G, Bing J and Gu H G 2016 Nonlinear Dyn. 86 1549
[10] Liu X L and Liu S Q 2012 Nonlinear Dyn. 67 847
[11] Gu H G, Pan B B and Li Y Y 2015 Nonlinear Dyn. 82 1191
[12] Ma J, Wu F Q and Alsaedi A, et al. 2018 Nonlinear Dyn. 93 2057
[13] Gu H G and Zhao Z G 2015 Plos One 10 e0138593-
[14] Ma J, Zhang G and Hayat T, et al. 2019 Nonlinear Dyn. 95 2019
[15] Wang R B, Wang Z Y and Zhu Z Y 2018 Nonlinear Dyn. 92 973
[16] Wang R B, Ichiro T and Zhang Z K 2015 Int. J. Neural Syst. 25 1450037
[17] Zhu F Y, Wang R B and Pan X C 2019 Cognitive Neurodynamics 13 75
[18] Wang Z Y and Wang R B 2014 Frontiers in Computational Neuroscience 8 14
[19] Zhu Z Y, Wang R B and Zhu F Y 2018 Front. Neurosci. 12 122
[20] Wang Y H, Wang R B and Zhu Y T 2017 Cognitive Neurodynamics 11 99
[21] Wang Y H, Xu X Y and Wang R B 2018 Front. Neurosci. 12 264
[22] Porter J T and Mccarthy K D 1996 J. Neurosci. 16 5073
[23] Parpura V and Haydon P G 2000 Proc. Natl. Acad. Sci. USA 97 8629
[24] Arcuino G, Lin J H and Takano T, et al. 2002 Proc. Natl. Acad. Sci. USA 99 9840
[25] Postnov D E, Ryazanova L S and Brazhe N A, et al. 2008 J. Biol. Phys. 34 441
[26] Li Y X and Rinzel J 1994 J. Theor. Biol. 166 461
[27] Nadkarni S and Jung P 2003 Phys. Rev. Lett. 91 268101
[28] Li J J, Xie Y and Yu Y G, et al. 2017 Sci. China: Technol. Sci. 60 43
[29] Erkan Y, Sarac Z and Yilmaz E 2019 Nonlinear Dyn. 95 3411
[30] Kanakov O, Gordleeva S and Ermolaeva A, et al. 2019 Phys. Rev. E 99 012418
[31] John F B, Matthew J T and Jennifer M S, et al. 2016 Proc. Natl. Acad. Sci. 113 14133
[32] Alex M A 2002 Kybernetes (Emerald Group Publishing Limited) pp. 140-142
[33] Ma J and Tang J 2017 Nonlinear Dyn. 89 1569
[34] Lv M, Wang C N and Ren G D, et al. 2016 Nonlinear Dyn. 85 1479
[35] Zhang X H and Liu S Q 2018 Chin. Phys. B 27 040501
[36] Chua L 1971 IEEE Trans. Circuit Theory 18 507
[37] Wang R B, Zhang Z K and Jiao X F 2006 Appl. Phys. Lett. 89 1102
[38] Wang Z Y, Wang R B and Fang R Y 2015 Cognitive Neurodynamics 9 129
[39] Wang R B and Zhu Y T 2016 Cognitive Neurodynamics 10 1
[40] Feng P H, Wu Y and Zhang J Z 2017 Frontiers in Computational Neuroscience 11 94
[41] Liu Y, Ma J and Xu Y, et al. 2019 Int. J. Bifur. Chaos 29 1950156
[42] Wu F Q, Gu H G and Li Y Y 2019 Commun. Nonlinear Sci. Numer. Simul. 79
[43] Muramatsu S, Toda M and Nishikawa J, et al. 2019 Brain Res. 1721
[44] Katta S, Sanzeni A and Das A, et al. 2019 J. Gen. Physiol. 151 1213
[45] Wang S S, Alousi A A and Thompson S H 1995 J. Gen. Physiol. 105 149
[46] Ma J and Tang J 2015 Sci. China: Technol. Sci. 58 2038
[47] Budyansky M, Uleysky M and Prants S 2002 Physica D-Nonlinear Phenomena 195 369
[48] Xue S S, Xue F and Ma Q R, et al. 2019 Pharmacol., Biochem. Behav. 184
[49] Zorzo C, Higarza S G and Mendez M, et al. 2019 Brain Res. Bull. 150 13
[50] Wang R, Feng P H and Fan Y C, et al. 2019 Int. J. Bifur. Chaos 29 1950005
[51] Wang Y Y and Wang R B 2018 Nonlinear Dyn. 91 319
[52] Kerrigan J F, Litt B and Fisher R S, et al. 2010 Epilepsia 45 346
[53] Steven C S and Clifford B S 1998 Epilepsia 39 677
[54] Dooley D M and Nisonson I 1981 Appl. Neurophysiol. 44 71
[1] Fractal sorting vector-based least significant bit chaotic permutation for image encryption
Yong-Jin Xian(咸永锦), Xing-Yuan Wang(王兴元), Ying-Qian Zhang(张盈谦), Xiao-Yu Wang(王晓雨), and Xiao-Hui Du(杜晓慧). Chin. Phys. B, 2021, 30(6): 060508.
[2] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[3] Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme
Hai-Tao Yu(于海涛), Zi-Han Meng(孟紫寒), Chen Liu(刘晨), Jiang Wang(王江), and Jing Liu(刘静). Chin. Phys. B, 2021, 30(3): 038703.
[4] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[5] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[6] Probing time delay of strong-field resonant above-threshold ionization
Shengliang Xu(徐胜亮), Qingbin Zhang(张庆斌), Cheng Ran(冉成), Xiang Huang(黄湘), Wei Cao(曹伟), and Peixiang Lu(陆培祥). Chin. Phys. B, 2021, 30(1): 013202.
[7] Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid
Gan Ren(任淦). Chin. Phys. B, 2021, 30(1): 016105.
[8] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[9] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[10] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[11] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[12] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[13] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[14] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[15] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
No Suggested Reading articles found!