Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 038201    DOI: 10.1088/1674-1056/ab6d50
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP

Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航)
Institute of Atomic and Molecular Physics, Jinlin University, Changchun 130012, China
Abstract  The influences of the substituent base position on the excited state intramolecular proton transfer fluorescence properties were explored in 2-(2'-hydroxyphenyl)imidazo[1,2-a]-pyridine (HPIP) and HPIP's derivatives (5'Br-HPIP and 6'Br-HPIP). And the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods were used to calculate the molecule structures. The calculated results showed that the influence of 5'Br-HPIP on the fluorescence intensity is stronger than that of 6'Br-HPIP. The fluorescence emission peak of 5'Br-HPIP occurred a blue shift compared with HPIP, and 6'Br-HPIP exhibited an opposite red shift. The change of the fluorescence emission peak was attributed to the decrease of the energy gap from 6'Br-HPIP to 5'Br-HPIP. Our work on the substituent position influence could be helpful to design and develop new materials.
Keywords:  time-dependent density functional theory      excited state intramolecular proton transfer  
Received:  10 December 2019      Revised:  13 January 2020      Published:  05 March 2020
PACS:  82.39.Jn (Charge (electron, proton) transfer in biological systems)  
  31.15.ee (Time-dependent density functional theory)  
  87.15.ht (Ultrafast dynamics; charge transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874180 and 11704146) and the Program of Science and Technology Development Plan of Jilin Province, China (Grant Nos. 20190201138TC and 20190103101JH).
Corresponding Authors:  Ying Shi, Hang Yin     E-mail:  shi_ying@jlu.edu.cn;yinhang@jlu.edu.cn

Cite this article: 

Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航) Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP 2020 Chin. Phys. B 29 038201

[1] Sato T, Jiang D L and Aida T 1999 J. Am. Chem. Soc. 121 10658
[2] Tong H, Hong Y, Dong Y, Ren Y, Häussler M, Lam J W Y, Wong K S and Tang B Z 2007 J. Phys. Chem. B 111 2000
[3] Kaiser T E, Wang H, Stepanenko V and Würthner F 2007 Angew. Chem. 119 5637
[4] Kaiser T E, Wang H, Stepanenko V and Würthner F 2007 Angew. Chem. Int. Ed. 46 5541
[5] Zhao C H, Wakamiya A, Inukai Y and Yamaguchi S 2006 J. Am. Chem. Soc. 128 15934
[6] Xie Z, Yang B, Li F, Cheng G, Liu L, Yang G, Xu H, Ye L, Hanif M, Liu S, Ma D and Ma Y 2005 J. Am. Chem. Soc. 127 14152
[7] Lupton J M, Hemingway L R, Samuel I D W and Burn P L 2000 J. Mater. Chem. 10 867
[8] Wang J, Zhao Y, Dou C, Sun H, Xu P, Ye K, Zhang J, Jiang S, Li F and Wang Y 2007 J. Phys. Chem. B 111 5082
[9] Luo J, Xie Z, Lam J W Y, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D and Tang B Z 2001 Chem. Commun. 18 1740
[10] Li Y, Li F, Zhang H, Xie Z, Xie W, Xu H, Li B, Shen F, Ye L, Hanif M,Ma D and Ma Y 2007 Chem. Commun. 231
[11] Wakamiya A, Mori K and Yamaguchi S 2007 Angew. Chem. 119 4351
[12] Yao H and Funada T 2014 Chem. Commun. 50 2748
[13] El Nahhas A, Pascher T, Leone L, Panzella L, Napolitano A and Sundstrom V 2014 J. Phys. Chem. Lett. 5 2094
[14] Tang K C, Chang M J, Lin T Y, Pan H A, Fang T C, Chen K Y, Hung W Y, Hsu Y H and Chou P T 2011 J. Am. Chem. Soc. 133 17738
[15] Tang K C, Chen C L, Chuang H H, Chen J L, Chen Y J, Lin Y C, Shen J Y, Hu W P and Chou P T 2011 J. Phys. Chem. Lett. 2 3063
[16] Barman S, Mukhopadhyay S K, Biswas S, Nandi S, Gangopadhyay M, Dey S, Anoop A and Singh N D P 2016 Angew. Chem. Int. Ed. 55 4194
[17] Weller A 1956 Ber. Bunsenges. Phys. Chem. 60 1144
[18] Han K L and Zhao G J 2011 Hydrogen Bonding and Transfer in the Excited State (Wiley Online Library) p. 464
[19] Amani T, Jordi M, Ali K and Kaher T 2014 Chin. Phys. B 23 46101
[20] Zhou P W and Han K L 2018 Acc.Chem. Res. 51 1681
[21] Zhou P and Zhao L 2018 Int. J. Quantum Chem. 118 e25618
[22] Sun C F, Su X, Zhou Q and Shi Y 2019 Org. Chem. Front. 6 3093
[23] Zhao Y, Wang M and Zhou P 2018 J. Phys. Chem. A 122 2864
[24] Zheng J J, Zhang G L, Guo Y X, Li X P and Chen W J 2007 Chin. Phys. B 16 1047
[25] Wu F, Lin L, Li X P, Yu Y X, Zhang G L and Chen W J 2008 Chin. Phys. B 17 1461
[26] Yang D P, Yang G, Zhao J F, Zheng R and Wang Y S 2017 J. Cluster Sci. 28 2449
[27] Zhou P W, Hoffmann M R, Han K L and He G Z 2015 J. Phys. Chem. B 119 2125
[28] Seo J, Kim S and Park S Y 2004 J. Am. Chem. Soc. 126 11154
[29] Han J H, Liu X C, Sun C F, Li Y, Hang Y and Shi Y 2018 RSC Adv. 8 29589
[30] Sun C F, Zhao H F, Liu X C, Yin H and Shi Y 2018 Org. Chem. Frontiers 10 1039
[31] Sakai K i, Takahashi S, Kobayashi A, Akutagawa T, Nakamura T, Dosen M, Kato M and Nagashima U 2010 Dalton T. 39 1989
[32] Zhang X and Liu J Y 2016 Dyes Pigments 125 80
[33] Li Y Q, Yang Y F and Ding Y 2017 Sci. Rep. 7 1574
[34] Bader A N, Pivovarenko V G, Demchenko A P, Ariese F and Gooijer C 2004 J. Phys. Chem. B 108 10589
[35] Wang Y, Yin H, Shi Y, Jin M X and Ding D J 2014 New J. Chem. 38 4458
[36] Zhao J, Chen J, Liu J and Hoffmann M R 2015 Phys. Chem. Chem. Phys. 17 11990
[37] Yasuhiro S, Toshiki M, Hirohiko Hand Koji A 2012 J. Phys. Chem. A 116 12041
[38] Mutai T, Sawatani H, Shida T, Shono H and Araki K 2013 J. Org. Chem. 78 2482
[39] Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09, Revision B. 01 (Wallingford: Gaussian, Inc.)
[40] Yang Y F, Zhao J F and Li Y Q 2016 Sci. Rep. 6 32152
[41] Zhao J F, Liu X Y and Zheng Y J 2017 J. Phys. Chem. A 121 4002
[42] Yang D P, Yang Y G and Liu Y F 2014 Spectrochim. Acta Part A 117 379
[43] Lu T and Chen F W 2012 J. Comput. Chem. 33 580
[44] https://www.chemcraftprog.com
[45] Liu X C, Yin H, Li H and Shi Y 2017 Spectrochimica Acta Part A 77 1
[46] Contreras-Garcia J, Johnson E R, Keinan S, Chaudret R, Piquemal J P, Beratan D N and Yang W T 2011 J. Chem. Theory Comput. 7 625
[47] Johnson E R, Keinan S, Mori-Sanchez P, Contreras-Carcia J, Cohen A J and Yang W T 2010 J. Am. Chem. Soc. 132 6498
[48] Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens Matter 21 084204
[49] Li C, Yang Y and Liu Y 2017 Phys. Chem. Chem. Phys. 19 4802
[50] Li C Z, Ma C, Li D L and Liu Y F 2016 J. Lumin. 172 29
[51] Jia L F, Wang F and Liu Y F 2018 Org. Electron. 57 292
[52] Hao J J and Yang Y 2018 Org. Chem. Front. 5 1330
[1] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[2] Theoretical investigations of collision dynamics of cytosine by low-energy (150-1000 eV) proton impact
Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), Xue-Fen Xu(许雪芬), Chao-Yi Qian(钱超义). Chin. Phys. B, 2020, 29(2): 023401.
[3] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[4] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[5] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[6] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[7] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
[8] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
[9] Tunable localized surface plasmon resonances in one-dimensional h-BN/graphene/h-BN quantum-well structure
Kaibiao Zhang(张开彪), Hong Zhang(张红), Xinlu Cheng(程新路). Chin. Phys. B, 2016, 25(3): 037104.
[10] Time-dependent density functional theoretical studies on the photo-induced dynamics of an HCl molecule encapsulated in C60 under femtosecond laser pulses
Liu Dan-Dan, Zhang Hong. Chin. Phys. B, 2013, 22(10): 103103.
[11] A time-dependent density functional theory investigation of plasmon resonances of linear Au atomic chains
Liu Dan-Dan, Zhang Hong. Chin. Phys. B, 2011, 20(9): 097105.
[12] Time dependent density functional calculation of plasmon response in clusters
Wang Feng, Zhang Feng-Shou, Eric Suraud. Chin. Phys. B, 2003, 12(2): 164-168.
No Suggested Reading articles found!