Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 037501    DOI: 10.1088/1674-1056/ab69e9

Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes

Qian Zhao(赵倩)1, Xin-Xin He(何鑫鑫)1, Francois-Jacques Morvan(李文瀚)2, Guo-Ping Zhao(赵国平)1,3, Zhu-Bai Li(李柱柏)1
1 Inner Mongolia Key Laboratory for Utilization of Bayan Obo Multi-Metallic Resources, Elected State Key Laboratory, Department of Applied Physics, College of Science, Inner Mongolia University of Science and Technology, Baotou 014010, China;
2 Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China;
3 College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610066, China
Abstract  Hysteresis loops, energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe14B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional (3D) and one-dimensional (1D) micromagnetic methods, focused on the influence of the interface anisotropy. The calculated results are carefully compared with each other. The interface anisotropy effect is very palpable on the nucleation, pinning and coercive fields when the soft layer is very thin. However, as the soft layer thickness increases, the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises. Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field. The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal, i.e., nucleation, evolution and irreversible motion of the domain wall. The above results calculated by two models are in good agreement with each other. Moreover, the in-plane magnetic moment orientations based on two models are different. The 3D calculation shows a progress of generation and disappearance of vortex state, however, the magnetization orientations within the film plane calculated by the 1D model are coherent. Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.
Keywords:  micromagnetics      interface anisotropy      Nd2Fe14B/α-Fe multilayers      magnetic properties  
Received:  23 October 2019      Revised:  06 January 2020      Published:  05 March 2020
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.40.Mg (Numerical simulation studies)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0700900), the National Natural Science Foundation of China (Grant Nos. 51571126 and 51861030), the Inner Mongolia Autonomous Region Natural Science Foundation of China (Grant No. 2019MS01002), and the Inner Mongolia Innovative Research Team of China (Grant No. 3400102).
Corresponding Authors:  Qian Zhao, Guo-Ping Zhao     E-mail:;

Cite this article: 

Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏) Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes 2020 Chin. Phys. B 29 037501

[1] Kneller E F and Hawig R 1991 IEEE Trans. Magn. 27 3588
[2] Liu W, Zhang Z D, Liu J P, Chen L J, He L D, Liu Y, Sun X K and Sellmyer D J 2002 Adv. Mater 14 1832
[3] Liu W, Li X Z, Liu J P, Sun X K, Chen C L, Skomski R, Zhang Z D and Sellmyer D J 2005 J. Appl. Phys. 97 104308
[4] Zhang Y, Kramer M J, Rong C B and Liu J P 2010 Appl. Phys. Lett. 97 032506
[5] Li Y Q, Yue M, Zuo J H, Zhang D T, Liu W Q, Zhang J X, Guo Z H and Li W 2013 IEEE Trans. Magn. 49 3391
[6] Skomski R 1994 J. Appl. Phys. 76 7059
[7] Victora R H and Shen X 2005 IEEE Trans. Magn. 41 2828
[8] Li Z B, Zhang M, Shen B G and Sunv J R 2013 Appl. Phys. Lett. 102 102405
[9] Zhang J, Takahashi Y K, Gopalan R and Hono K 2005 Appl. Phys. Lett. 86 122509
[10] Ryo H S, Hu L X, Kim J G and Yang Y L 2017 IEEE Trans. Magn. 53 7400207
[11] Poudyal N Y, Mohapatra J, Xing M Y, Kim C U and Liu J P 2018 IEEE Magn. Lett. 9 5501604
[12] Zhang W, Zhao G P, Yuan X H and Ye L N 2012 J. Magn. Magn. Mater. 324 4231
[13] Yuan X H, Zhao G P, Yue M, Ye L N, Xia J, Zhang X C and Chang J 2013 J. Magn. Magn. Mater. 343 245
[14] Weng X J, Shen L C, Tang H, Zhao G P, Xia J, Morvan F J and Zou J 2019 J. Magn. Magn. Mater. 475 352
[15] Asti G, Ghidini M, Pellicelli R, Pernechele C, Solzi M, Albertini F, Fabbrici S and Pareti L 2006 Phys. Rev. B 73 094406
[16] Asti G, Solzi M, Ghidini M and Neri F M 2004 Phys. Rev. B 69 174401
[17] Fan J P, Liang R Y, Bai Y H, Yang Y, Sun J, Jiang Y N, Wang F and Xu X H 2016 J. Appl. Phys. 119 233902
[18] Cui W B, Zheng S J, Liu W, Ma X L, Yang F, Yao Q, Zhao X G and Zhang Z D 2008 J. Appl. Phys. 104 053903
[19] Ghidini M, Asti G, Pelicelli R, Pernechele C and Solzi M 2007 J. Magn. Magn. Mater 316 159
[20] Cui W B, Takahashi Y K and Hono K 2012 Adv. Mater. 24 6530
[21] Zhao G P and Wang X L 2006 Phys. Rev. B 74 012409
[22] Zhao G P, Zhao M G, Lim H S, Feng Y P and Ong C K 2005 Appl. Phys. Lett. 87 162513
[23] Si W J, Zhao G P, Ran N, Peng Y and F J 2015 Sci. Rep. 5 16212
[24] Gradmann U and Müller J 1968 Phys. Stat. Solidi 27 313
[25] Néel L 1954 J. Phys. Radium. 15 225
[26] Chappert C and Bruno P 1988 J. Appl. Phys. 64 5736
[27] Bruno P and Renard J P 1989 Appl. Phys. A 49 499
[28] Gradmann U, Korecki J and Waller G 1986 Appl. Phys. A 39 101
[29] Pellicelli R, Solzi M and Pernechele C 2014 J. Phys. D: Appl. Phys. 47 115002
[30] Zhao Q, He X X, Morvan F J, Zhang X F, Zhao G P, Li Z B and Ma Q 2019 J. Magn. Magn. Mater 476 40
[31] Zhao Q, Chen J, Wang J Q, Zhang X F, Zhao G P and Ma Q 2017 Sci. Rep. 7 4286
[32] Zhao G P, Morvan F and Wan X L 2014 Rev. Nanosci. Nanotechnol. 3 227
[33] Zhao G P, Zhao L, Shen L C, Zou J and Qui L 2019 Chin. Phys. B 28 077505
[34] Johnson M T, Bloemen P J H, Broeder F J A D and Vries J J D 1996 Rep. Prog. Phys. 59 1409
[35] Fruchart O, Nozieres J P and Givord D 1997 J. Magn. Magn. Mater. 165 508
[36] Lin M T, Shen J, Kuch W, Jenniches H, Klaua M, Schneider C M and Kirschner J 1997 Phys. Rev. B 55 5886
[37] Zhao Q, He X X, Morvan F J, Zhang X F, Zhao G P, Li Z B, Li L F and Liu Y L 2020 J. Magn. Magn. Mater 495 165858
[38] Donahue M J and Porter D G 1999 OOMMF User's Guide Version 1.0. NISTIR 6376 NIST, Gaithersburg, M D
[39] Gilbert T L 2004 IEEE Trans. Magn. 40 3443
[40] Skomski R and Coey J M D 1993 Phys. Rev. B 48 15812
[41] Brown J W F 1945 Rev. Mod. Phys. 17 15
[1] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[2] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[3] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[4] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[5] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[6] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[7] Electronic shell study of prolate Lin(n =15-17) clusters: Magnetic superatomic molecules
Lijuan Yan(闫丽娟), Jianmei Shao(邵健梅), and Yongqiang Li(李永强). Chin. Phys. B, 2020, 29(12): 125101.
[8] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), and Bao-Gen Shen(沈保根)†. Chin. Phys. B, 2020, 29(10): 107504.
[9] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[10] Off-axis electron holography of manganite-based heterojunctions: Interface potential and charge distribution
Zhi-Bin Ling(令志斌), Gui-Ju Liu(刘桂菊), Cheng-Peng Yang(杨成鹏), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜). Chin. Phys. B, 2019, 28(4): 046101.
[11] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[12] Enhanced structural and magnetic properties of microwave sintered Li-Ni-Co ferrites prepared by sol-gel method
Nandeibam Nilima, M Maisnam, Sumitra Phanjoubam. Chin. Phys. B, 2019, 28(2): 026101.
[13] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
[14] Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes
Meng Du(杜萌), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Zhong-Po Zhou(周忠坡), Shuo-Xue Jin(靳硕学), Bao-Yi Wang(王宝义). Chin. Phys. B, 2018, 27(2): 027805.
[15] Mn-based permanent magnets
Jinbo Yang(杨金波), Wenyun Yang(杨文云), Zhuyin Shao(邵珠印), Dong Liang(梁栋), Hui Zhao(赵辉), Yuanhua Xia(夏元华), Yunbo Yang(杨云波). Chin. Phys. B, 2018, 27(11): 117503.
No Suggested Reading articles found!