Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 037101    DOI: 10.1088/1674-1056/ab696e
Special Issue: SPECIAL TOPIC — Topological semimetals
SPECIAL TOPIC—Topological semimetals Prev   Next  

Single crystal growth, structural and transport properties of bad metal RhSb2

D S Wu(吴德胜)1,2, Y T Qian(钱玉婷)1,2, Z Y Liu(刘子懿)1,2, W Wu(吴伟)1,2, Y J Li(李延杰)1,2, S H Na(那世航)1,2, Y T Shao(邵钰婷)1,2, P Zheng(郑萍)1,2, G Li(李岗)1,2,3, J G Cheng(程金光)1,2,3, H M Weng(翁红明)1,2,3, J L Luo(雒建林)1,2,3
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We have successfully grown an arsenopyrite marcasite type RhSb2 single crystal, and systematically investigated its crystal structure, electrical transport, magnetic susceptibility, heat capacity, and thermodynamic properties. We found that the temperature-dependent resistivity exhibits a bad metal behavior with a board peak around 200 K. The magnetic susceptibility of RhSb2 shows diamagnetism from 300 K to 2 K. The low-temperature specific heat shows a metallic behavior with a quite small electronic specific-heat coefficient. No phase transition is observed in both specific heat and magnetic susceptibility data. The Hall resistivity measurements show that the conduction carriers are dominated by electrons with ne = 8.62×1018 cm-3 at 2 K, and the electron carrier density increases rapidly above 200 K without change sign. Combining with ab-initio band structure calculations, we showed that the unusual peak around 200 K in resistivity is related to the distinct electronic structure of RhSb2. In addition, a large thermopower S(T) about -140 μV/K is observed around 200 K, which might be useful for future thermoelectric applications.
Keywords:  single crystal growth      ab-initio band calculations      susceptibility      heat capacity      thermodynamic transport properties  
Received:  09 December 2019      Revised:  02 January 2020      Published:  05 March 2020
PACS:  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  52.25.Fi (Transport properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674375, 11634015, 11925408, and 11674369), the National Basic Research Program of China (Grant Nos. 2016YFA0300600, 2016YFA030240, 2017YFA0302901, and 2018YFA0305700), the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant Nos. QYZDB-SSW-SLH013, XDB28000000, and XXH13506-202), the Science Challenge Project of China (Grant No. TZ2016004), the K. C. Wong Education Foundation, China (Grant No. GJTD-2018-01), the Beijing Natural Science Foundation, China (Grant No. Z180008), and the Beijing Municipal Science and Technology Commission, China (Grant No. Z181100004218001).
Corresponding Authors:  J L Luo     E-mail:

Cite this article: 

D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林) Single crystal growth, structural and transport properties of bad metal RhSb2 2020 Chin. Phys. B 29 037101

[1] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
[2] Weng H M, Fang C, Fang Z B, Bernevig A and Dai X 2015 Phys. Rev. X 5 011029
[3] Weng H M, Fang Z and Dai X 2014 Phys. Rev. X 4 011002
[4] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J and Fang Z 2015 Phys. Rev. X 5 031013
[5] Wieting T J, Gubser D U, Wolf S A and Levy F 1980 Bull. Am. Phys. Soc. 25 340
[6] Okada S, Sambongi T and Ido M 1980 J. Phys. Soc. Jpn. 49 839
[7] Johnston W D, Miller R C and Damon D H 1965 J. Less-Common Met. 8 272
[8] Hulliger F 1964 Nature 201 4917
[9] Kjekshus A 1971 Acta Chem. Scand. 25 441
[10] Sun P, Oeschler N, Johnsen S, Iversen B B and Steglich F 2009 Phys. Rev. B 79 153308
[11] Takahashi H, Okazaki R, Yasui Y and Terasaki I 2011 Phys. Rev. B 84 205215
[12] Hulliger F 1963 Phys. Lett. 4 282
[13] Furuseth S, Brattas L and Kjekshus A 1973 Acta Chem. Scand. 27 2367
[14] DiSalvo F J, Fleming R M and Waszczak J V 1981 Phys. Rev. B 24 2935
[15] Liu Y, Yuan X, Zhang C, Jin Z, Narayan A, Luo C and Sanvito S 2016 Nat. Commun. 7 12516
[16] Jones T E, Fuller W W, Wieting T J and Levy F 1982 Solid State Commun. 42 793
[17] Izumi M, Uchinokura K, Matsuura E and Harada S 1982 Solid State Commun. 42 773
[18] McIlroy D N, Moore S, Zhang D, Wharton J, Kempton B, Littleton R and Olson C G 2004 J. Phys.: Condens. Matter. 16 30
[19] Liang T, Lin J, Gibson Q, Kushwaha S, Liu M, Wang W and Shen Z X 2018 Nat. Phys. 14 451
[20] Chen R Y, Zhang S J, Zhang A Q, Gu G D and Wang N L 2015 Phys. Rev. B 92 075107
[21] Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J, Dong L G and Zhou X J 2017 Nat. Commun. 8 15512
[22] Manzoni G, Gragnaniello L, Autés G, Kuhn T, Sterzi A, Cilento F and Bisti F 2016 Phys. Rev. Lett. 117 237601
[23] Smontara A, Biljakovi K, Miljak M and Sambong T 1986 Physica B 143 267
[24] Hooda M K and Yada C S 2017 Appl. Phys. Lett. 111 053902
[25] Zhang J L, Wang C M, Guo C Y, Zhu X Zhang D, Yang Y and Tian M L 2019 Phys. Rev. Lett. 123 196602
[27] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[29] Blöchl P E 1994 Phys. Rev. B 50 17953
[30] Fang Y, Ran S, Xie W, Wang S, Meng Y S and Maple M B 2018 Proc. Natl. Acad. Sci. USA 115 8558
[31] He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J and Li S Y 2014 Phys. Rev. Lett. 113 246402
[32] Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G and Liu B A 2014 Nat. Commun. 5 3786
[33] Zhao Y, Zhang H, Liu C, Wang H, Wang J, Lin Z and Brombosz S M 2015 Phys. Rev. X 5 031037
[34] Feng J, Pang Y, Wu D, Wang Z, Weng H, Li J and Lu L 2015 Phys. Rev. B 92 081306(R)
[35] Martino E, Crassee I, Eguchi G, Santos C D, Zhong R D, Gu G D and Akrap A 2019 Phys. Rev. Lett. 122 217402
[1] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[2] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[3] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[4] Intrinsic fluctuation and susceptibility in somatic cell reprogramming process
Jian Shen(沈健), Xiaomin Zhang(张小敏), Qiliang Li(李齐亮), Xinyu Wang(王歆宇), Yunjie Zhao(赵蕴杰), Ya Jia(贾亚). Chin. Phys. B, 2019, 28(4): 040503.
[5] Weighted total variation using split Bregman fast quantitative susceptibility mapping reconstruction method
Lin Chen(陈琳), Zhi-Wei Zheng(郑志伟), Li-Jun Bao(包立君), Jin-Sheng Fang(方金生), Tian-He Yang(杨天和), Shu-Hui Cai(蔡淑惠), Cong-Bo Cai(蔡聪波). Chin. Phys. B, 2018, 27(8): 088701.
[6] Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene
Mohsen Yarmohammadi. Chin. Phys. B, 2017, 26(2): 026502.
[7] Anomalous low-temperature heat capacity in antiperovskite compounds
Xin-Ge Guo(郭新格), Jian-Chao Lin(林建超), Peng Tong(童鹏), Shuai Lin(蔺帅), Cheng Yang(杨骋), Wen-Jian Lu(鲁文建), Wen-Hai Song(宋文海), Yu-Ping Sun(孙玉平). Chin. Phys. B, 2017, 26(2): 026501.
[8] Time gap for temporal cloak based on spectral hole burning in atomic medium
Abdul Jabar M S, Bakht Amin Bacha, Iftikhar Ahmad. Chin. Phys. B, 2016, 25(8): 084205.
[9] Entanglement detection in the mixed-spin Ising-XY model
Hamid Arian Zad. Chin. Phys. B, 2016, 25(3): 030303.
[10] Growth and characterization of CaCu3Ru4O12 single crystal
Wang Rong-Juan, Zhu Yuan-Yuan, Wang Li, Liu Yong, Shi Jing, Xiong Rui, Wang Jun-Feng. Chin. Phys. B, 2015, 24(9): 097501.
[11] Influence of vacuum degree on growth of Bi2Te3 single crystal
Tang Yan-Kun, Zhao Wen-Juan, Zhu Hua-Qiang, Huang Yong-Chao, Cao Wei-Wei, Yang Qian, Yao Xiao-Yan, Zhai Ya, Dong Shuai. Chin. Phys. B, 2015, 24(7): 078101.
[12] Low-temperature physical properties and electronic structures of Ni3Sb, Ni5Sb2, NiSb2, and NiSb
Luo Xiao-Ning, Dong Cheng, Liu Shi-Kai, Zhang Zi-Ping, Li Ao-Lei, Yang Li-Hong, Li Xiao-Chuan. Chin. Phys. B, 2015, 24(6): 067201.
[13] Double spin-glass-like behavior and antiferromagnetic superexchange interaction between Fe3+ ions in α-Ga2-xFexO3 (0 ≤ x ≤ 0.4)
Lv Yi-Fei, Xiang Jian-Yong, Wen Fu-Sheng, Lv Wei-Ming, Hu Wen-Tao, Liu Zhong-Yuan. Chin. Phys. B, 2015, 24(3): 037502.
[14] Observation of spin glass transition in spinel LiCoMnO4
Chen Hong, Yang Xu, Zhang Pei-Song, Liang Lei, Hong Yuan-Ze, Wei Ying-Jin, Chen Gang, Du Fei, Wang Chun-Zhong. Chin. Phys. B, 2015, 24(12): 127501.
[15] Fabrication and magnetic properties of 4SC(NH2)2-Ni0.97Cu0.03Cl2 single crystals
Chen Li-Min, Guo Ying, Liu Xu-Guang, Xie Qi-Yun, Tao Zhi-Kuo, Chen Jing, Zhou Ling-Ling, Liu Chun-Sheng. Chin. Phys. B, 2015, 24(12): 127503.
No Suggested Reading articles found!