|
|
Intrinsic fluctuation and susceptibility in somatic cell reprogramming process |
Jian Shen(沈健)1, Xiaomin Zhang(张小敏)1,2, Qiliang Li(李齐亮)1, Xinyu Wang(王歆宇)1, Yunjie Zhao(赵蕴杰)1, Ya Jia(贾亚)1 |
1 Department of Physics, Central China Normal University, Wuhan 430079, China;
2 School of Information Engineering, Wuhan Technology and Business University, Wuhan 430065, China |
|
|
Abstract Based on the coherent feedforward transcription regulation loops in somatic cell reprogramming process, a stochastic kinetic model is proposed to study the intrinsic fluctuations in the somatic cell reprogramming. The Fano factor formulas of key genes expression level in the coherent feedforward transcription regulation loops are derived by using of Langevin theory. It is found that the internal fluctuations of gene expression levels mainly depend on itself activation ratio and degradation ratio. When the self-activation ratio (or self-degradation ratio) is increased, the Fano factor increases reaches a maximum and then decreases. The susceptibility is used to measure the sensitivity of steady-state response to the variation in systemic parameters. It is found that with the increase of the self-activation ratio (or self-degradation ratio), the susceptibility of steady-state increases at first, it reaches a maximum, and it then decreases. The magnitude of the maximum is increased with the increase of activated ratio by the upstream transcription factor.
|
Received: 20 November 2018
Revised: 05 January 2019
Accepted manuscript online:
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
87.17.Aa
|
(Modeling, computer simulation of cell processes)
|
|
87.18.Vf
|
(Systems biology)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775091 and 11474117). |
Corresponding Authors:
Ya Jia
E-mail: jiay@mail.ccnu.edu.cn
|
Cite this article:
Jian Shen(沈健), Xiaomin Zhang(张小敏), Qiliang Li(李齐亮), Xinyu Wang(王歆宇), Yunjie Zhao(赵蕴杰), Ya Jia(贾亚) Intrinsic fluctuation and susceptibility in somatic cell reprogramming process 2019 Chin. Phys. B 28 040503
|
[1] |
Takahashi K and Yamanaka S 2006 Cell 126 663
|
[2] |
Stadtfeld M, Maherali N, Breault D T and Hochedlinger K 2008 Cell Stem Cell 2 230
|
[3] |
Brambrink T, Foreman R, Welstead G G, Lengner C J, Wernig M, Suh H and Jaenisch R 2008 Cell Stem Cell 2 151
|
[4] |
Chan E M, Ratanasirintrawoot S, Park I H, Manos P D, Loh Y H, Huo H, Miller J D, Hartung O, Rho J, Ince T A, Daley G Q and Schlaeger T M 2009 Nat. Biotechnol. 27 1033
|
[5] |
Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T, Shioda T and Hochedlinger K 2010 Nature 465 175
|
[6] |
Smith Z D, Nachman I, Regev A and Meissner A 2010 Nat. Biotechnol. 28 521
|
[7] |
Mikkelsen T S, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein B E, Jaenisch R, Lander E S and Meissner A 2008 Nature 454 49
|
[8] |
Samavarchi-Tehrani P, Golipour A, David L, Sung H K, Beyer T A, Datti A, Woltjen K, Nagy A and Wrana J L 2010 Cell Stem Cell 7 64
|
[9] |
Hanna J, Saha K, Pando B, Zon J V, Lengner C J, Creyghton M P, Oudenaarden A V and Jaenisch R 2009 Nature 462 595
|
[10] |
Yamanaka S 2009 Nature 460 49
|
[11] |
Buganim Y, Faddah D A, Cheng A W, Itskovich E, Markoulaki S, Ganz K, Klemm S L, Oudenaarden A V and Jaenisch R 2012 Cell 150 1209
|
[12] |
Muraro M J, Kempe H and Verschuer P J 2013 Stem Cells 31 838
|
[13] |
MacArthur B D and Lemischka I R 2013 Cell 154 484
|
[14] |
Morrisa R, Sancho-Martinez I, Sharpee T O and Belmonte J C I 2014 Proc. Natl. Acad. Sci. USA 111 5076
|
[15] |
Chung K M, Kolling I, Chung K M, F W I V, Gajdosik M D, Burger S, Russell A C and Nelson C E 2014 PLoS One 9 e95304
|
[16] |
Wang L F, Qiu K and Jia Y 2017 Chin. Phys. B 26 030503
|
[17] |
He P, Qiu K and Jia Y 2018 Sci. Rep. 8 14323
|
[18] |
He P, Billy K J, Ma H, Jia Y and Yang L 2019 Nonlinear Dyn. 95 259
|
[19] |
Wang L F, Xu Y, Ma J and Jia Y 2018 Commun. Theor. Phys. 70 485
|
[20] |
Zhang X P, Liu F and Wang W 2011 Proc. Natl. Acad. Sci. USA 108 8990
|
[21] |
Zhang X P, Liu F, Cheng Z and Wang W 2009 Proc. Natl. Acad. Sci. USA 106 12245
|
[22] |
Wang D G, Zhou C H and Zhang X P 2017 Chin. Phys. B 26 128709
|
[23] |
Lu L L, Jia Y, Xu Y, Ge M Y, Yang L J and Zhan X 2019 Sci. China Technol. Sci. 62 427
|
[24] |
Ge M, Jia Y, Xu Y and Yang L 2018 Nonlinear Dyn. 91 515
|
[25] |
Xu Y, Jia Y, Ge M, Lu L, Yang L and Zhan X 2018 Neurocomputing 283 196
|
[26] |
Ge M, Jia Y, Kirunda J B, Xu Y, Shen J, Lu L, Liu Y, Pei Q Zhan X and Yang L 2018 Neurocomputing 320 60
|
[27] |
Lu L, Jia Y, Kirunda J B, Xu Y, Ge M, Pei Q and Yang L 2018 Nonlinear Dyn., November 11, pp. 1-14
|
[28] |
Xu Y, Jia Y, Kirunda J B, Shen J, Ge M, Lu L and Pei Q 2018 Complexity 2018 3012743
|
[29] |
Lu L, Jia Y, Lu W and Yang L 2017 Complexity 2017 7628537
|
[30] |
Xu Y, Jia Y, Wang H, Liu Y, Wang P and Zhao Y 2019 Nonlinear Dyn.
|
[31] |
Alon U 2007 Nat. Rev. Genet. 8 450
|
[32] |
Swain P S 2004 J. Mol. Biol. 344 965
|
[33] |
Jia Y, Liu W, Li A, Yang L and Zhan X 2009 Biophys. Chem. 143 80
|
[34] |
MacArthur B D, Please C P and Oreffo R O C 2008 PLoS One 3 e3086
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|