Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 038503    DOI: 10.1088/1674-1056/ab6960
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars

Jia-Fei Yao(姚佳飞)1,2, Yu-Feng Guo(郭宇锋)1,2, Zhen-Yu Zhang(张振宇)1,2, Ke-Meng Yang(杨可萌)1,2, Mao-Lin Zhang(张茂林)1,2, Tian Xia(夏天)3
1 College of Electronic and Optical Engineering&College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology, Nanjing 210023, China;
3 School of Electrical Engineering, University of Vermont, Burlington, VT 05405, USA
Abstract  This paper presents a new silicon-on-insulator (SOI) lateral-double-diffused metal-oxide-semiconductor transistor (LDMOST) device with alternated high-k dielectric and step doped silicon pillars (HKSD device). Due to the modulation of step doping technology and high-k dielectric on the electric field and doped profile of each zone, the HKSD device shows a greater performance. The analytical models of the potential, electric field, optimal breakdown voltage, and optimal doped profile are derived. The analytical results and the simulated results are basically consistent, which confirms the proposed model suitable for the HKSD device. The potential and electric field modulation mechanism are investigated based on the simulation and analytical models. Furthermore, the influence of the parameters on the breakdown voltage (BV) and specific on-resistance (Ron,sp) are obtained. The results indicate that the HKSD device has a higher BV and lower Ron,sp compared to the SD device and HK device.
Keywords:  high-k dielectric      step doped silicon pillar      model      breakdown voltage  
Received:  17 October 2019      Revised:  16 December 2019      Published:  05 March 2020
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61704084 and 61874059).
Corresponding Authors:  Yu-Feng Guo     E-mail:  yfguo@njupt.edu.cn

Cite this article: 

Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天) Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars 2020 Chin. Phys. B 29 038503

[1] Li Q, Zhang Z Y, Li H O, Sun T Y, Chen Y H and Zuo Y 2019 Chin. Phys. B 28 037201
[2] Fan J, Sun S M, Wang H Z and Zou Y G 2018 Chin. Phys. Lett. 35 038501
[3] Li W, Zheng Z, Wang Z G, Li P, Fu X J, He Z R, Liu Fan, Yang F, Xiang F and Liu C L 2017 Chin. Phys. B 26 017701
[4] Zhang W T, Li L, Qiao M, Zhan Z Y, Cheng S K, Zhang S, He B Y, Luo X R, Li Z J and Zhang B 2019 IEEE Trans. Electron. Devices 40 1151
[5] Liang L X, Huang H M, Chen X B 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), August 3-5, 2016, Hong Kong, China, p. 120
[6] Sunkavalli R, Tamba A and Baliga B J 1995 Proc. IEEE International SOI Conference October 3-5, 1995, Tucson, AZ, USA, p. 139
[7] Guo Y F, Li Z J, Zhang B 2006 Microelectron. J. 37 861
[8] Chen W J, Zhang B and Li Z J 2007 IEEE International Conference on Communications, Circuits and Systems, July 11-13, 2007, Kokura, Japan, p. 1256
[9] Hu Y, Wang H, Du C X, Ma M M, Chan M S, He J and Wang G F 2016 IEEE Trans. Electron. Devices 63 1969
[10] Duan B X, Cao Z, Yuan X N, Yuan S and Yang Y T 2015 IEEE Electron Device Lett. 36 47
[11] Yao J F, Guo Y F, Xia T, Zhang J and Lin H 2016 Superlattices Microstruct. 96 95
[12] Wang X W, Luo X R, Yin C, Fan Y H, Zhou K, Fan Y, Cai J Y, Luo Y C, Zhang B and Li Z J 2013 Acta Phys. Sin. 62 237301 (in Chinese)
[13] Chen X B and Huang M M 2012 IEEE Trans. Electron. Devices 59 2430
[14] Yao J F, Guo Y F, Yang K M, Du L, Zhang J and Xia T 2019 IEEE Trans. Electron. Devices 66 3055
[15] Chen W J, Zhang B and Li Z J 2007 Semicond. Sci. Technol. 22 464
[16] Guo Y F, Zhang B, Li Z J 2006 IEEE International Conference on Communications, Circuits and Systems, June 25-28, 2006, Guilin, China
[17] Lin C P, Tsui B Y, Yang M J, Huang R H and Chien C H 2006 IEEE Electron Device Lett. 27 360
[18] Park J H, Jang G S, Kim H Y, Lee S K and Joo S K 2015 IEEE Electron. Device Lett. 36 920
[19] Campbell S A, Gilmer D C, Wang X C, Hsieh M T, Kim H S, Gladfelter W L, Yan J H 1997 IEEE Trans. Electron. Devices 44 104
[20] Zhu Z Y, Xu J, Zhao H L and Luo Z J 2015 IEEE Trans. Electron. Devices 62 2352
[21] Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York: Springer Science & Business Media)
[1] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[2] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[3] Entrainment mechanism of the cyanobacterial circadian clock induced by oxidized quinone
Ying Li(李莹), Guang-Kun Zhang(张广鹍), Zi-Gen Song(宋自根). Chin. Phys. B, 2020, 29(9): 098703.
[4] Coupling analysis of transmission lines excited by space electromagnetic fields based on time domain hybrid method using parallel technique
Zhi-Hong Ye(叶志红), Xiao-Lin Wu(吴小林), Yao-Yao Li(李尧尧). Chin. Phys. B, 2020, 29(9): 090701.
[5] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[6] Inverse Ising techniques to infer underlying mechanisms from data
Hong-Li Zeng(曾红丽), Erik Aurell. Chin. Phys. B, 2020, 29(8): 080201.
[7] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[8] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[9] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[10] Electrical modeling of dielectric barrier discharge considering surface charge on the plasma modified material
Hong-Lu Guan(关弘路), Xiang-Rong Chen(陈向荣), Tie Jiang(江铁), Hao Du(杜浩), Ashish Paramane, Hao Zhou(周浩). Chin. Phys. B, 2020, 29(7): 075204.
[11] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[12] Improved hybrid parallel strategy for density matrix renormalization group method
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 070202.
[13] Analysis of extreme ultraviolet spectra of laser-produced Cd plasmas
Mohammedelnazier Bakhiet, Maogen Su(苏茂根), Shiquan Cao(曹世权), Qi Min(敏琦), Duixiong Sun(孙对兄), Siqi He(何思奇), Lei Wu(吴磊), Chenzhong Dong(董晨钟). Chin. Phys. B, 2020, 29(7): 075203.
[14] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[15] Lifshitz transition in triangular lattice Kondo-Heisenberg model
Lan Zhang(张欄), Yin Zhong(钟寅), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 077102.
No Suggested Reading articles found!