Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 027302    DOI: 10.1088/1674-1056/ab6717
Special Issue: SPECIAL TOPIC — Optical field manipulation
TOPICAL REVIEW—Optical field manipulation Prev   Next  

Research progress of femtosecond surface plasmon polariton

Yulong Wang(王玉龙)1, Bo Zhao(赵波)2, Changjun Min(闵长俊)1, Yuquan Zhang(张聿全)1, Jianjun Yang(杨建军)2, Chunlei Guo(郭春雷)2, Xiaocong Yuan(袁小聪)1
1 Nano Photonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China;
2 The Guo China-US Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract  As the combination of surface plasmon polariton and femtosecond laser pulse, femtosecond surface plasmon polariton has both nanoscale spatial resolution and femtosecond temporal resolution, and thus provides promising methods for light field manipulation and light-matter interaction in extreme small spatiotemporal scales. Nowadays, the research on femtosecond surface plasmon polariton is mainly concentrated on two aspects: one is investigation and characterization of excitation, propagation, and dispersion properties of femtosecond surface plasmon polariton in different structures or materials; the other one is developing new applications based on its unique properties in the fields of nonlinear enhancement, pulse shaping, spatiotemporal super-resolved imaging, and others. Here, we introduce the research progress of properties and applications of femtosecond surface plasmon polariton, and prospect its future research trends. With the further development of femtosecond surface plasmon polariton research, it will have a profound impact on nano-optoelectronics, molecular dynamics, biomedicine and other fields.
Keywords:  surface plasmon polariton      femtosecond laser pulse      spatiotemporal super-resolution      nonlinear optics  
Received:  31 October 2019      Revised:  14 December 2019      Published:  05 February 2020
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91750205, 61427819, U1701661, 11674178, and 61975128), the Leading Talents of Guangdong Province Program, China (Grant No. 00201505), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2016A030312010 and 2017A030313351), the Science and Technology Innovation Commission of Shenzhen City (Grant Nos. JCYJ20180507182035270, KQTD2017033011044403, KQJSCX20170727100838364, ZDSYS201703031605029, and JCYJ2017818144338999), and the K. C. Wong Education Foundation (Grant No. GJTD-2018-08).
Corresponding Authors:  Changjun Min, Xiaocong Yuan     E-mail:;

Cite this article: 

Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪) Research progress of femtosecond surface plasmon polariton 2020 Chin. Phys. B 29 027302

[1] Ebbesen T H, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[2] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[3] Miyazaki H T and Kurokawa Y 2006 Phys. Rev. Lett. 96 097401
[4] Cirací C, Hill R T, Mock J J, Urzhumov Y, Fernández-Domínguez A I, Maier S A, Pendry J B, Chilkoti A and Smith D R 2012 Science 337 1072
[5] Kim S, Jin J, Kim Y J, Park I Y, Kim Y and Kim S W 2008 Nature 453 757
[6] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R and Feld M S 1997 Phys. Rev. Lett. 78 1667
[7] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L and Tian Z Q 2010 Nature 464 392
[8] Du L P, Lei D Y, Yuan G H, Fang H, Zhang X, Wang Q, Tang D Y, Min C J, Maier S A and Yuan X C 2013 Sci. Rep. 3 3064
[9] Shen J F, Wang J, Zhang C J, Min C J, Fang H, Du L P, Zhu S W and Yuan X C 2013 Appl. Phys. Lett. 103 191119
[10] Pettinger B, Schambach P, Villagómez C J and Scott N 2012 Ann. Rev. Phys. Chem. 63 379
[11] Treffer R, Bohme R, Deckert-Gaudig T, Lau K, Tiede S, Lin X M and Deckert V 2012 Biochem. Soc. T 40 609
[12] Steidtner J and Pettinger B 2008 Phys. Rev. Lett. 100 236101
[13] Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L and Hou J G 2013 Nature 498 82
[14] Zhong J H, Jin X, Meng L Y, Wang X, Su H S, Yang Z L, Williams C T and Ren B 2017 Nat. Nanotechnol. 12 132
[15] Zayats A V, Smolyaninovb I I and Maradudin A A 2005 Phys. Rep. 408 131
[16] Dou X J, Min C J, Zhang Y Q and Yuan X C 2016 Acta Opt. Sin. 36 1026004
[17] Maier S A 2007 Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC) pp. 25-34
[18] Kretschmann E and Raether H 1968 Z. Naturforsch. 23 2135
[19] Zhang K, Du C G and Gao J C 2009 Acta Phys. Sin. 66 227302 (in Chinese)
[20] Otto A 1968 Z. Phys. 216 398
[21] Hecht B, Bielefeldt H, Novotny L, Inouye Y and Pohl D W 1996 Phys. Rev. Lett. 77 1889
[22] Hornauer D, Kapitza H and Raether H 1974 J. Phys. D: Appl. Phys. 7 L100
[23] Maiman T H 1960 Nature 187 493
[24] Spence D E, Kean P N and Sibbett W 1991 Opt. Lett. 16 42
[25] Nabekawa Y, Kuramoto Y, Togashi T, Sekikawa T and Watanabe S 1998 Opt. Lett. 23 1384
[26] Nisoli M, DeSilvestri S, Svelto O, Szipöcs R, Ferencz K, Spielmann C, Sartania S and Krausz F 1997 Opt. Lett. 22 522
[27] Adachi S, Ishii H, Kanai T, Ishii N, Kosuge A and Watanabe S 2007 Opt. Lett. 32 2487
[28] Matsubara E, Yamane K, Sekikawa T and Yamashita M 2007 J. Opt. Soc. Am. B 24 985
[29] Hannaford P 2000 Femtosecond laser spectroscopy (Boston: Springer) pp. 61-86
[30] Yamanouchi K 2002 Science 295 1659
[31] Peterman E J G, Monshouwer R, Stokkum I H M V, Grondelle R V and Amerongen H V 1997 Chem. Phys. Lett. 264 279
[32] Keller E L, Brandt N C, Cassabaum A A and Frontiera R R 2015 Analyst 140 4922
[33] Douhal A, Lahmani F and Zewail A H 1996 Chem. Phys. 207 477
[34] Point G, Brelet Y, Houard A, Jukna V, Milián C, Carbonnel J, Liu Y, Couairon A and Mysyrowicz A 2014 Phys. Rev. Lett. 112 223902
[35] Panagiotopoulos P, Whalen P, Kolesik M and Moloney J V 2015 Nat. Photon. 9 543
[36] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[37] Vozzi C, Calegari F, Ferrari F, Lucchini M, Silvestri S D, Svelto O, Sansone G, Stagira S and Nisoli M 2009 Laser Phys. Lett. 6 259
[38] Morimoto Y and Baum P 2018 Nat. Phys. 14 252
[39] Dudley J M, Finot C, Richardson D J and Millot G 2007 Nat. Phys. 3 597
[40] Kravtsov V, Ulbricht R, Atkin J M and Raschke M B 2016 Nat. Nanotechnol. 11 459
[41] Park I Y, Kim S, Choi J, Lee D H, Kim Y J, Kling M F, Stockman M I and Kim S W 2011 Nat. Photon. 5 677
[42] Jiang Y Q, Narushima T and Okamoto H 2010 Nat. Phys. 6 1005
[43] Zhang Y Q, Shen J F, Min C J, Jin Y F, Jiang Y Q, Liu J, Zhu S W, Sheng Y L, Zayats A V and Yuan X C 2018 Nano Lett. 18 5538
[44] Zhang N, Zhu X N, Yang J J, Wang X L and Wang M W 2007 Phys. Rev. Lett. 99 167602
[45] Nishiyama Y, Imaeda K, Imura K and Okamoto H 2015 J. Phys. Chem. C 119 16215
[46] Mårsell E, Losquin A, Svärd R, Miranda M, Guo C, Harth A, Lorek E, Mauritsson J, Arnold C L, Xu H X, Huillier A L and Mikkelsen A 2015 Nano Lett. 15 6601
[47] Gorkhover T, Schorb S, Coffee R et al 2016 Nat. Photon. 10 93
[48] Yalcin S E, Wang Y and Achermann M 2008 Appl. Phys. Lett. 93 101103
[49] Sámson Z L, Horak P, MacDonald K F and Zheludev N I 2011 Opt. Lett. 36 250
[50] Kubo A, Onda K, Petek H, Sun Z J, Jung Y S and Kim H K 2005 Nano Lett. 5 1123
[51] Ogawa S, Nagano H, Petek H and Heberle A P 1997 Phys. Rev. Lett. 78 1339
[52] Fecher G H, Schmidt O, Hwu Y and Schönhense G 2002 J. Electron. Spectrosc. 126 77
[53] Rotermund H H 1997 Sur. Sci. Rep. 29 265
[54] Kubo A, Pontius N and Petek H 2007 Nano Lett. 7 470
[55] Zhang L X, Kubo A, Wang L M, Petek H and Seideman T 2011 Phys. Rev. B 84 245442
[56] Wang W H and Zhang N 2018 Acta Phys. Sin. 67 247302 (in Chinese)
[57] Rewitz C, Keitzl T, Tuchscherer P, Huang J S, Geisler P, Razinskas G, Hecht B and Brixner T 2012 Nano Lett. 12 45
[58] Lemke C, Leißner T, Evlyukhin A, Radke J W, Klick A, Fiutowski J, Hansen J K, Rubahn H G, Chichkov B N, Carsten Reinhardt and Bauer M 2014 Nano Lett. 14 2431
[59] Sun Q, Ueno K, Yu H, Kubo A, Matsuo Y and Misawa H 2013 Light Sci. Appl. 2 e118
[60] Frank B, Kahl P, Podbiel D, Spektor G, Orenstein M, Fu L W, Weiss T, Hoegen M H V, Davis T J, Meyer zu Heringdorf F J and Giessen H 2017 Sci. Adv. 3 e1700721
[61] Ropers C, Neacsu C C, Elsaesser T, Albrecht M, Raschke M B and Lienau C 2007 Nano Lett. 7 2784
[62] Neacsu C C, Berweger S, Olmon R L, Saraf L V, Ropers C and Raschke M B 2010 Nano Lett. 10 592
[63] Müller M, Kravtsov V, Paarmann A, Raschke M B and Ernstorfer R 2016 ACS Photon. 3 611
[64] Berweger S, Atkin J M, Xu X G, Olmon R L and Raschke M B 2011 Nano Lett. 11 4309
[65] Neacsu C C, Reider G A and Raschke M B 2005 Phys. Rev. B 71 201402
[66] Li J M, Tang P, Wang J J, Huang T, Lin F, Fang Z Y and Zhu X 2015 Acta Phys. Sin. 64 194201 (in Chinese)
[67] Spektor G, Kilbane D, Mahro A K, Frank B, Ristok S, Gal L, Kahl P, Podbiel D, Mathias S, Giessen H, Meyer zu Heringdorf F J, Orenstein M and Aeschlimann M 2017 Science 355 1187
[68] Novotny L and Hulst N V 2011 Nat. Photon. 5 83
[69] Nahata A and Linke R A 2003 Opt. Lett. 28 423
[70] Pu Y, Grange R, Hsieh C L and Psaltis D 2010 Phys. Rev. Lett. 104 207402
[71] Zhang Y, Grady N K, Orozco C A and Halas N J 2011 Nano Lett. 11 5519
[72] Hanke T, Cesar J, Knittel V, Trügler A, Hohenester U, Leitenstorfer A and Bratschitsch R 2012 Nano Lett. 12 992
[73] Galanty M, Shavit O, Weissman A, Aharon H, Gachet D, Segal E and Salomon A 2018 Light Sci. Appl. 7 49
[74] Frontiera R R, Henry A, Gruenke N L and Duyne R P V 2011 J. Phys. Chem. Lett. 2 1199
[75] Roxworthy B J and Toussaint Jr K C 2012 Sci. Rep. 2 752
[76] Kotsifaki D G, Kandyla M and Lagoudakis P G 2016 Sci. Rep. 6 26275
[77] Shoji T, Saitoh J, Kitamura N, Nagasawa F, Murakoshi K, Yamauchi H, Ito S, Miyasaka H, Ishihara H and Tsuboi Y 2013 J. Am. Chem. Soc. 135 6643
[78] Joly A G, Gong Y, El-Khoury P Z and Hess W P 2018 J. Phys. Chem. Lett. 9 6164
[79] Mittal R, Glenn R, Saytashev I, Lozovoy V V and Dantus M 2015 J. Phys. Chem. Lett. 6 1638
[80] Vogelsang J, Hergert G, Wang D, Groß P and Lienau C 2018 Light Sci. Appl. 7 55
[81] Toma K, Masaki K, Kusaba M, Hirosawa K and Kannari F 2015 J. Appl. Phys. 118 103102
[82] Pisani F, Fedeli L and Macchi A 2018 ACS Photon. 5 1068
[83] MacDonald K F, Sámson Z L, Stockman M I and Zheludev N I 2009 Nat. Photon. 3 55
[84] MacDonald K F and Zheludev N I 2009 Laser Photon. Rev. 4 562
[85] Vorobyev A Y and Guo C L 2013 Laser Photon. Rev. 7 385
[86] Huang M, Zhao F, Cheng Y, Xu N and Xu Z Z 2009 ACS Nano 3 4062
[87] Wang L, Chen Q D, Cao X W, Buividas R, Wang X W, Juodkazis S and Sun H B 2017 Light Sci. Appl. 6 e17112
[88] Vorobyev A Y and Guo C L 2008 J. Appl. Phys. 104 063523
[89] Tang Y F, Yang J J, Zhao B, Wang M W and Zhu X N 2012 Opt. Express 20 25826
[90] Lou K, Qian S X, Wang X L, Li Y G, Gu B, Tu C H and Wang W T 2012 Opt. Express 20 120
[91] Shen M Y, Carey J E, Crouch C H, Kandyla M, Stone H A and Mazur E 2008 Nano Lett. 8 2087
[92] Xue L, Yang J J, Yang Y, Wang Y S and Zhu X N 2012 Appl. Phys. A 109 357
[93] Cong J, Yang J J, Zhao B and Xu X F 2015 Opt. Express 23 5357
[94] Qiao H Z, Yang J J, Wang F, Yang Y and Sun J L 2015 Opt. Express 23 26617
[95] Liu Q, Zhang N, Yang J J, Qiao H Z and Guo C L 2018 Opt. Express 26 11718
[96] Fraggelakisa F, Mincuzzia G, Lopez J, Hönninger I M and Kling R 2019 Appl. Sur. Sci. 470 677
[97] Buividas R, Stoddart P R and Juodkazis S 2012 Ann. Phys-Berlin 524 L5
[98] Vorobyev A Y, Makin V S and Guo C L 2009 Phys. Rev. Lett. 102 234301
[99] Hwang T Y, Vorobyev A Y and Guo C L 2009 Phys. Rev. B 79 085425
[1] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[2] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[3] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[4] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[5] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[6] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[7] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[8] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[9] Effect of recombination process in femtosecond laser-induced modification on Ge crystal
Jia-Qi Ju(居家奇), Zi-Yao Qin(秦子尧), Ju-Kun Liu(刘聚坤), Hong-Wei Zhao(赵宏伟), Yao-Qing Huang(黄耀清), Rong-Rong Hu(胡蓉蓉), and Hua Wu(吴华)$. Chin. Phys. B, 2020, 29(11): 114208.
[10] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
[11] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[12] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[13] Enhancement and control of the Goos-Hänchen shift bynonlinear surface plasmon resonance in graphene
Qi You(游琪), Leyong Jiang(蒋乐勇), Xiaoyu Dai(戴小玉), Yuanjiang Xiang(项元江). Chin. Phys. B, 2018, 27(9): 094211.
[14] Research progress of third-order optical nonlinearity of chalcogenide glasses
Xiao-Yu Zhang(张潇予), Fei-Fei Chen(陈飞飞), Xiang-Hua Zhang(章向华), Wei Ji(季伟). Chin. Phys. B, 2018, 27(8): 084208.
[15] Modulation and mechanism of ultrafast transient spectroscopy based on dimethylamino-carbaldehyde derivatives
Tong-xing Jin(金桐兴), Jun-yi Yang(杨俊义), Yu Fang(方宇), Yan-bing Han(韩艳兵), Ying-lin Song(宋瑛林). Chin. Phys. B, 2018, 27(5): 054208.
No Suggested Reading articles found!