Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 106701    DOI: 10.1088/1674-1056/ab4177
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Expansion dynamics of a spherical Bose-Einstein condensate

Rui-Zong Li(李睿宗)1,3, Tian-You Gao(高天佑)1, Dong-Fang Zhang(张东方)1, Shi-Guo Peng(彭世国)1, Ling-Ran Kong(孔令冉)1,3, Xing Shen(沈星)1,3, Kai-Jun Jiang(江开军)1,2
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
2 Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China;
3 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

We experimentally and theoretically observe the expansion behaviors of a spherical Bose-Einstein condensate. A rubidium condensate is produced in an isotropic optical dipole trap with an asphericity of 0.037. We measure the variation of the condensate size in the expansion process after switching off the trap. The free expansion of the condensate is isotropic, which is different from that of the condensate usually produced in the anisotropic trap. We derive an analytic solution of the expansion behavior based on the spherical symmetry, allowing a quantitative comparison with the experimental measurement. The interaction energy of the condensate is gradually converted into the kinetic energy during the expansion and after a long time the kinetic energy saturates at a constant value. We obtain the interaction energy of the condensate in the trap by probing the long-time expansion velocity, which agrees with the theoretical calculation. This work paves a way to explore novel quantum states of ultracold gases with the spherical symmetry.

Keywords:  Bose-Einstein condensate      spherical trap      free expansion  
Received:  12 July 2019      Revised:  21 August 2019      Accepted manuscript online: 
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  67.10.Ba (Boson degeneracy)  
  34.50.Cx (Elastic; ultracold collisions)  
  37.10.De (Atom cooling methods)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301503), the National Natural Science Foundation of China (Grant Nos. 11674358, 11434015, and 11474315), and Chinese Academy of Sciences (Grant No. YJKYYQ20170025).

Corresponding Authors:  Tian-You Gao, Kai-Jun Jiang     E-mail:  602gty@sina.com;kjjiang@wipm.ac.cn

Cite this article: 

Rui-Zong Li(李睿宗), Tian-You Gao(高天佑), Dong-Fang Zhang(张东方), Shi-Guo Peng(彭世国), Ling-Ran Kong(孔令冉), Xing Shen(沈星), Kai-Jun Jiang(江开军) Expansion dynamics of a spherical Bose-Einstein condensate 2019 Chin. Phys. B 28 106701

[1] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[2] Jin D S, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1996 Phys. Rev. Lett. 77 420
[3] Mewes M-O, Andrews M R, van Druten N J, Kurn D M, Durfee D S, Townsend C G and Ketterle W 1996 Phys. Rev. Lett. 77 988
[4] Ozeri R, Katz N, Steinhauer J and Davidson N 2005 Rev. Mod. Phys. 77 187
[5] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[6] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[7] Eckardt A 2017 Rev. Mod. Phys. 89 011004
[8] Lin Y J, Jimenez-Garcia K and Spielman I B 2011 Nature 471 83
[9] Dalibard J, Gerbier F, Juzeliūnas G and Öhberg P 2011 Rev. Mod. Phys. 83 1523
[10] Kinoshita T, Wenger T and Weiss D S 2006 Nature 440 900
[11] Cazalilla M A, Citro R, Giamarchi T, Orignac E and Rigol M 2011 Rev. Mod. Phys. 83 1405
[12] Ketterle W, Durfee D and Stamper-Kurn D 1999 In Bose-Einstein condensation in atomic gases, Proceedings of the International School of Physics "Enrico Fermi", Course CXL (M Inguscio, S Stringari and C E Wieman (IOS Press: Amsterdam) pp. 67-176
[13] Dalfovo F and Stringari S 1996 Phys. Rev. A 53 2477
[14] Baym G and Pethick C J 1996 Phys. Rev. Lett. 76 6
[15] Castin Y and Dum R 1996 Phys. Rev. Lett. 77 5315
[16] Holland M J, Jin D S, Chiofalo M L and Cooper J 1997 Phys. Rev. Lett. 78 3801
[17] Dalfovo F, Minniti C, Stringari S and Pitaevskii L P 1997 Phys. Lett. A 227 259
[18] Hodby E, Hechenblaikner G, Marago O M, Arlt J, Hopkins S and Foot C J 2000 J. Phys. B: At. Mol. Opt. Phys. 33 4087
[19] Lobser D S, Barentine A E S, Cornell E A and Lewandowski H J 2015 Nat. Phys. 11 1009
[20] Zhang D, Gao T, Kong L, Li K and Jiang K 2016 Chin. Phys. Lett. 33 76701
[21] Ernst U, Marte A, Schreck F, Schuster J and Rempe G 1998 Europhys. Lett. 4 1
[22] Ernst U, Schuster J, Schreck F, Marte A, Kuhn A and Rempe G. 1998 Appl. Phys. B 67 719
[23] Mewes M-O, Andrews M R, van Druten N J, Kurn D M, Durfee D S and Ketterle W 1996 Phys. Rev. Lett. 77 416
[24] Zhang D, Gao T, Zou P, Kong L, Li R, Shen X, Chen X, Peng S, Zhan M, Pu H and Jiang K 2019 Phys. Rev. Lett. 122 110402
[25] Gao T, Zhang D, Kong L, Li R and Jiang K 2018 Chin. Phys. Lett. 35 86701
[26] Lin Y J, Perry A R, Compton R L, Spielman I B and Porto J V 2009 Phys. Rev. A 79 063631
[27] Stringari S 1996 Phys. Rev. Lett. 77 2360
[28] Chen H R, Lin K Y, Chen P K, Chiu N C, Wang J B, Chen C A, Huang P P, Yip S K, Kawaguchi Y and Lin Y J 2018 Phys. Rev. Lett. 121 113204
[29] Chen P K, Liu L R, Tsai M J, Chiu N C, Kawaguchi Y, Yip S K, Chang M S and Lin Y J 2018 Phys. Rev. Lett. 121 250401
[30] Guilleumas M and Pitaevskii L P 1999 Phys. Rev. A 61 013602
[31] Gao T, Pan J S, Zhang D, Kong L, Li R, Shen X,Chen X, Peng S G,Zhan M, Liu W V and Jiang K 2018 arXiv: 1805.04727
[32] Pitaevskii L 1997 Phys. Lett. A 229 406
[33] Rusch M, Morgan S A, Hutchinson D A W and Burnett K 2000 Phys. Rev. Lett. 85 4844
[34] Straatsma C J E, Colussi V E, Davis M J, Lobser D S, Holland M J, Anderson D Z, Lewandowski H J and Cornell E A 2016 Phys. Rev. A 94 043640
[35] Liu X J, Hu H, Minguzzi A and Tosi M P 2004 Phys. Rev. A 69 043605
[36] Williams J E and Griffin A 2001 Phys. Rev. A 64 013606
[37] Jackson B and Zaremba E 2002 Phys. Rev. A 66 033606
[38] Giorgini S 2000 Phys. Rev. A 61 063615
[1] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[2] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[3] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[4] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[5] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[6] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[7] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[8] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[9] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[10] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
[11] Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(12): 120501.
[12] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[13] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[14] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[15] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
No Suggested Reading articles found!