Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 103105    DOI: 10.1088/1674-1056/ab4042
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound

Yu-Sheng Wang(王玉生)1, Min Jia(贾敏)1, Qiao-Li Zhang(张巧丽)1, Xiao-Yan Song(宋晓燕)1, Da-Peng Yang(杨大鹏)1,2
1 College of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China;
2 State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Abstract  Owing to the importance of excited state dynamical relaxation, the excited state intramolecular proton transfer (ESIPT) mechanism for a novel compound containing dual hydrogen bond (abbreviated as “1-enol”) is studied in this work. Using density functional theory (DFT) and time-dependent density functional theory (TDDFT) method, the experimental electronic spectra can be reproduced for 1-enol compound. We first verify the formation of dual intramolecular hydrogen bonds, and then confirm that the dual hydrogen bond should be strengthened in the first excited state. The photo-excitation process is analyzed by using frontier molecular orbital (HOMO and LUMO) for 1-enol compound. The obvious intramolecular charge transfer (ICT) provides the driving force to effectively facilitate the ESIPT process in the S1 state. Exploration of the constructed S0-state and S1-state potential energy surface (PES) reveals that only the excited state intramolecular single proton transfer occurs for 1-enol system, which makes up for the deficiencies in previous experiment.
Keywords:  excited state intramolecular proton transfer      potential energy surface      intramolecular charge transfer      infrared vibrational spectra  
Received:  07 June 2019      Revised:  24 August 2019      Published:  05 October 2019
PACS:  31.15.ee (Time-dependent density functional theory)  
  31.15.ae (Electronic structure and bonding characteristics)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404112), the Funding Scheme for Young Teachers in Colleges and Universities in Henan Province, China (Grant No. 2017GGJS077), and the Key Scientific Research Project of Colleges and Universities of Henan Province, China (Grant No. 18A140023).
Corresponding Authors:  Yu-Sheng Wang     E-mail:  yswang7106@163.com

Cite this article: 

Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏) Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound 2019 Chin. Phys. B 28 103105

[37] Cong L, Yin H, Shi Y, Jin M and Ding D 2015 RSC Adv. 5 1205
[1] Olsen S and Smith S 2008 J. Am. Chem. Soc. 130 8677
[38] Yin H and Shi Y 2018 Chin. Phys. B 27 058201
[2] Wu Y, Han W, Wang D, Gao Y and Zhao Y 2008 Acc. Chem. Res. 41 1418
[39] Zhao Y, Wang M, Zhou P, Yang C, Ma X, Tang Z and Bao D 2018 J. Phys. Org. Chem. 31 e3803
[3] Tung C, Wu L, Zhang L and Chen B 2003 Acc. Chem. Res. 36 39
[40] Li H, Shi Y, Yin H, Wang Y, Cong L, Jin M and Ding D 2015 Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 141 211
[4] Zhao J, Dong H, Yang H and Zheng Y 2018 Org. Chem. Front. 5 2710
[41] Liu S, Ma Y, Yang Y, Liu S, Li Y and Song Y 2018 Chin. Phys. B 27 023103
[5] Demchenko A, Tang K and Chou P 2013 Chem. Soc. Rev. 42 1379
[42] Zhou P and Han K 2018 Acc. Chem. Res. 51 1681
[6] Liu Y, Mehata M and Liu J 2011 J. Phys. Chem. A 115 19
[43] Li G, Song P and He G 2011 Chin. J. Chem. Phys. 27 305
[7] Liu Y, Wang S, Zhu C and Lin S 2017 New J. Chem. 41 8437
[44] Li G and Chu T 2011 Phys. Chem. Chem. Phys. 13 20766
[8] Zhao H, Sun C, Liu X, Yin H and Shi Y 2019 Chin. Phys. B 28 018201
[45] Li G, Zhao G, Han K and He G 2011 J. Comput. Chem. 32 668
[9] Zhao H, Yin H, Liu X, Li H, Shi Y, Liu C, Jin M, Gao J, Luo Y and Ding D 2019 J. Phys. Chem. Lett. 10 3064
[46] Li G, Zhao G, Liu Y, Han K and He G 2010 J. Comput. Chem. 31 1759
[10] Weller A 1955 Naturwissenschafter. 42 175
[47] Tang K, Chang M, Lin T, Pan H, Fang T, Chen K, Hung W, Hsu Y and Chou P 2011 J. Am. Chem. Soc. 133 17738
[11] Zhao G and Han K 2008 Biophys. J. 94 38
[48] Li G and Han K 2018 WIREs Comput. Mol. Sci. 8 e1351
[12] Zhao G, Northrop B, Han K and Stang P 2010 J. Phys. Chem. A 114 9007
[49] Frisch M, Trucks G, Schlegel H, et al. 2009 Gaussian 09, revision D.01; Gaussian, Inc., Wallingford, CT
[13] Zhao G and Han K 2009 J. Phys. Chem. A 113 4788
[50] Lee C, Yang W and Parr R 1988 Phys. Rev. B 37 785
[14] Zhao G and Han K 2012 Acc. Chem. Res. 45 404
[51] Becke A 1993 J. Chem. Phys. 98 5648
[15] Zhao G and Han K 2008 J. Comput. Chem. 29 2010
[52] Miehlich B, Savin A, Stoll H and Preuss H 1989 Chem. Phys. Lett. 157 200
[16] Zhao G and Han K 2010 Phys. Chem. Chem. Phys. 12 8914
[53] Feller D 1996 J. Comput. Chem. 17 1571
[17] Zhao J, Dong H, Yang H and Zheng Y 2019 ACS Appl. Bio. Mater. 2 2060
[54] Cammi R and Tomasi J 1995 J. Comput. Chem. 16 1449
[18] Du C, Zhou Q, Zhang M, Song P and Ma F 2019 J. Phys. Org. Chem. 32 e3901
[55] Cances E, Mennucci B and Tomasi J 1997 J. Chem. Phys. 107 3032
[19] Li J, Zhang M, Guo Y, Zhao M, Song P and Li X 2019 J. Chin. Chem. Soc. 66 385
[56] Li J, Zhang M, Du C, Song P and Li X 2018 J. Phys. Org. Chem. 31 e3867
[20] Huang J, Wu J, Dong H, Song P and Zhao J 2017 Commun. Comput. Chem. 5 27
[57] Han J, Liu X, Li H, Yin H, Zhao H, Ma L, Song Y and Shi Y 2018 Phys. Chem. Chem. Phys. 20 26259
[21] Boonkipatarakul K, Wang J, Niamnont N Liu B, Mcdonald L, Pang Y and Sukwattanasinitt M 2016 ACS Sens 1 144
[22] Abeywickrama C and Pang Y 2017 Tetrahedron Lett. 58 1627
[58] Li J, Li X, Cheng S, Song P and Zhao J 2018 J. At. Mol. Sci. 9 1
[23] Liu Y, Wang S, Wang C, Zhu C, Han K and Lin S 2016 J. Chem. Phys. 145 164314
[59] Yin H, Zhang Y, Zhao H, Yang G, Shi Y, Zhang S and Ding D 2018 Dyes Pigm. 159 506
[24] Zhao J, Yao H, Liu J and Hoffmann M 2015 J. Phys. Chem. A 119 681
[60] Wei Q, Wang J, Zhao M, Zhang M, Song Y and Song P 2018 Can. J. Chem. 96 83
[25] Wang J, Chen W, Liu X, Wesdemiotis C and Pang Y 2014 J. Mater. Chem. B 2 3349
[61] Li H, Yin H, Liu X, Shi Y, Jin M and Ding D 2017 Spectrochim. Acta Part. A 184 270
[26] Zhang T, Yang G, Jia M, Song X, Zhang Q and Yang D 2018 J. Phys. Org. Chem. 31 e3857
[62] Maheshwari S, Chowdhury A, Sathyamurthy N, Mishra H, Tripathi H, Panda M and Chandrasekhar J 1999 J. Phys. Chem. A 103 6257
[27] Chen Y, Wu P, Peng C, Shen J, Tsai C, Hu W and Chou P 2017 Phys. Chem. Chem. Phys. 19 28641
[63] Mahanta S, Paul B, Singh R and Guchhait N 2011 J. Comput. Chem. 32 1
[28] Liu Y, Lan S, Zhu C and Lin S 2015 J. Phys. Chem. A 119 6269
[64] Paul B and Guchhait N 2012 J. Lumin. 132 2194
[29] Zhao J, Chen J, Liu J and Hoffmann M 2015 Phys. Chem. Chem. Phys. 17 11990
[30] Tang K, Chen C, Chuang H, Chen J, Chen Y, Lin Y, Shen J, Hu W and Chou P 2011 J. Phys. Chem. Lett. 2 3063
[31] Zhao J, Chen J, Cui Y, Wang J, Xia L, Dai Y, Song P and Ma F 2015 Phys. Chem. Chem. Phys. 17 1142
[32] Zhao J, Dong H and Zheng Y 2018 J. Phys. Chem. A 122 1200
[33] Zhao J, Dong H and Zheng Y 2018 J. Lumin. 195 228
[34] Liu Y, Lan S and Li C 2013 Spectrochim. Acta Part. A 112 257
[35] Zhang Z, Chen Y, Hung W, Tang W, Hsu Y, Chen C, Meng F and Chou P 2016 Chem. Mater. 28 8815
[36] Reis J, Fernandes A, Freitas-Dorr B, Bastors E and Stefani H 2018 Tetrahedron 74 6866
[37] Cong L, Yin H, Shi Y, Jin M and Ding D 2015 RSC Adv. 5 1205
[38] Yin H and Shi Y 2018 Chin. Phys. B 27 058201
[39] Zhao Y, Wang M, Zhou P, Yang C, Ma X, Tang Z and Bao D 2018 J. Phys. Org. Chem. 31 e3803
[40] Li H, Shi Y, Yin H, Wang Y, Cong L, Jin M and Ding D 2015 Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 141 211
[41] Liu S, Ma Y, Yang Y, Liu S, Li Y and Song Y 2018 Chin. Phys. B 27 023103
[42] Zhou P and Han K 2018 Acc. Chem. Res. 51 1681
[43] Li G, Song P and He G 2011 Chin. J. Chem. Phys. 27 305
[44] Li G and Chu T 2011 Phys. Chem. Chem. Phys. 13 20766
[45] Li G, Zhao G, Han K and He G 2011 J. Comput. Chem. 32 668
[46] Li G, Zhao G, Liu Y, Han K and He G 2010 J. Comput. Chem. 31 1759
[47] Tang K, Chang M, Lin T, Pan H, Fang T, Chen K, Hung W, Hsu Y and Chou P 2011 J. Am. Chem. Soc. 133 17738
[48] Li G and Han K 2018 WIREs Comput. Mol. Sci. 8 e1351
[49] Frisch M, Trucks G, Schlegel H, et al. 2009 Gaussian 09, revision D.01; Gaussian, Inc., Wallingford, CT
[50] Lee C, Yang W and Parr R 1988 Phys. Rev. B 37 785
[51] Becke A 1993 J. Chem. Phys. 98 5648
[52] Miehlich B, Savin A, Stoll H and Preuss H 1989 Chem. Phys. Lett. 157 200
[53] Feller D 1996 J. Comput. Chem. 17 1571
[54] Cammi R and Tomasi J 1995 J. Comput. Chem. 16 1449
[55] Cances E, Mennucci B and Tomasi J 1997 J. Chem. Phys. 107 3032
[56] Li J, Zhang M, Du C, Song P and Li X 2018 J. Phys. Org. Chem. 31 e3867
[57] Han J, Liu X, Li H, Yin H, Zhao H, Ma L, Song Y and Shi Y 2018 Phys. Chem. Chem. Phys. 20 26259
[58] Li J, Li X, Cheng S, Song P and Zhao J 2018 J. At. Mol. Sci. 9 1
[59] Yin H, Zhang Y, Zhao H, Yang G, Shi Y, Zhang S and Ding D 2018 Dyes Pigm. 159 506
[60] Wei Q, Wang J, Zhao M, Zhang M, Song Y and Song P 2018 Can. J. Chem. 96 83
[61] Li H, Yin H, Liu X, Shi Y, Jin M and Ding D 2017 Spectrochim. Acta Part. A 184 270
[62] Maheshwari S, Chowdhury A, Sathyamurthy N, Mishra H, Tripathi H, Panda M and Chandrasekhar J 1999 J. Phys. Chem. A 103 6257
[63] Mahanta S, Paul B, Singh R and Guchhait N 2011 J. Comput. Chem. 32 1
[64] Paul B and Guchhait N 2012 J. Lumin. 132 2194
[1] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[2] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[3] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[4] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[5] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光), Kaifeng Chen(陈凯锋), Gang Wang(王岗), Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[6] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[7] Collision of cold CaF molecules: Towards evaporative cooling
Yuefeng Gu(顾跃凤), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(3): 033401.
[8] The CALYPSO methodology for structure prediction
Qunchao Tong(童群超), Jian Lv(吕健), Pengyue Gao(高朋越), Yanchao Wang(王彦超). Chin. Phys. B, 2019, 28(10): 106105.
[9] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[10] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
[11] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
[12] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[13] Accurate double many-body expansion potential energy surface of HS2(A2A') by scaling the external correlation
Lu-Lu Zhang(张路路), Yu-Zhi Song(宋玉志), Shou-Bao Gao(高守宝), Yuan Zhang(张媛), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2016, 25(5): 053101.
[14] Catalytic reduction of N2O by CO over PtlAum- clusters:A first-principles study
Mi Hong, Wei Shi-Hao, Duan Xiang-Mei, Pan Xiao-Yin. Chin. Phys. B, 2015, 24(9): 098201.
[15] Globally accurate ab initio based potential energy surface of H2O+(X4A")
Song Yu-Zhi, Zhang Yuan, Zhang Lu-Lu, Gao Shou-Bao, Meng Qing-Tian. Chin. Phys. B, 2015, 24(6): 063101.
No Suggested Reading articles found!