Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 108103    DOI: 10.1088/1674-1056/ab4041
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties

Wei-Qi Yu(余维琪)1,2, Yi-Chen Qiu(邱怡宸)3, Hong-Jun Xiao(肖红君)2, Hai-Tao Yang(杨海涛)3,4, Ge-Ming Wang(王戈明)1
1 School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
2 National Center for Nanoscience and Technology, Beijing 100190, China;
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 Fujian Institute of Innovation, Chinese Academy of Sciences, Fozhou 350108, China
Abstract  Large-area and flexible reduced graphene oxide (rGO)/Fe3O4 NPs/polyurethane (PU) composite films are fabricated by a facile solution-processable method. The monolayer assembly of Fe3O4 nanoparticles with a high particle-stacking density on the graphene oxide (GO) sheets is achieved by mixing two immiscible solutions of Fe3O4 nanoparticles in hexane and GO in dimethylformide (DMF) by a mild sonication. The x-ray diffraction and Raman spectrum confirm the reduced process of rGO by a simple thermal treatment. The permittivity value of the composite in a frequency range of 0.1 GHz-18 GHz increases with annealing temperature of GO increasing. For 5-wt% rGO/Fe3O4 NPs/PU, the maximum refection loss (RL) of over -35 dB appears at 4.5 GHz when the thickness of film increases to 5 mm. The rGO/Fe3O4 NPs/PU film, exhibiting good electromagnetic properties over GHz frequency range, could be a potential candidate as one of microwave absorption materials in flexible electronic devices.
Keywords:  graphene oxide      magnetic nanoparticles      flexible film      electromagnetic properties  
Received:  21 July 2019      Revised:  24 August 2019      Published:  05 October 2019
PACS:  81.05.ue (Graphene)  
  75.75.-c (Magnetic properties of nanostructures)  
  67.80.dm (Films)  
  92.60.Ta (Electromagnetic wave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274370, 51471185, and 11704288) and the National Key Research and Development Program of China (Grant Nos. 2016YFJC020013 and 2018FYA0305800).
Corresponding Authors:  Hong-Jun Xiao, Ge-Ming Wang     E-mail:  xiaohj@nanoctr.cn;wanggemingwit@163.com

Cite this article: 

Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明) Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties 2019 Chin. Phys. B 28 108103

[1] Kong L B, Li Z W, Liu L, Huang R, Abshinova M, Yang Z H, Tang C B, Tan P K, Deng C R and Matitsine S 2013 Int. Mater. Rev. 58 203
[2] Chakraborty U, Chatterjee S, Chowdhury S K and Sarkar P P 2011 Prog. Electromagn. Res. C 18 211
[3] Sun X, He J P, Li G X, Tang J, Wang T, Guo Y X and Xue H R 2013 J. Mater. Chem. C 1 765
[4] Yang Z H, Li Z W, Yang Y H and Xu Z C 2014 ACS Appl. Mater. Interfaces 6 21911
[5] Lv H L, Zhang H Q, Ji G G and Xu Z C 2016 ACS Appl. Mater. Interfaces 8 6529
[6] Sebastian M T and Jantunen H 2008 Int. Mater. Rev. 53 57
[7] Buerkle A, Sarabandi K and Mosallaei H 2005 IEEE Trans. Anten. Propag. 53 1020
[8] Truong V T, Riddell S Z and Muscat R F 1998 J. Mater. Sci. 33 4971
[9] Kim J, Khoh W H, Wee B H and Hong J D 2015 RSC Adv. 5 9904
[10] Quan B, Shi W H, Ong S J H, Lu X C, Wang P L Y, Ji G B, Guo Y F, Zheng L R and Xu Z C 2019 Adv. Funct. Mater. 29 1901236
[11] Li Q, Zhang Z, Qi L P, Liao Q L, Kang Z and Zhang Y 2019 Adv. Sci. 6 8
[12] Zhang Y, Huang Y, Zhang T, Chang H, Xiao P, Chen H, Huang Z and Chen Y 2015 Adv. Mater. 27 2049
[13] Chen D Z, Wang G S, He S, Liu J, Guo L and Cao M S 2013 J. Mater. Chem. A 1 5996
[14] Wang T, Li Y, Wang, Liu L C, Geng S, Jia X, Yang F, Zhang L, Liu L, You B, Ren X and Yang H T 2015 RSC Adv. 5 60114
[15] Zhang X J, Wang G S, Cao W Q, Wei Y Z, Cao M S and Guo L 2014 RSC Adv. 4 19594
[16] Han M, Yin X, Kong L, Li M, Duan W, Zhang L and Cheng L 2014 J. Mater. Chem. A 2 16403
[17] Huang J, Cheng S P, Chen Y X, Chen Z L, Luo H, Xia X H and Liu H B 2019 J. Mater. Chem. A 7 16720
[18] Li C, Fu Y S, Wu Z, Xia J W and Wang X 2019 Nanoscale 11 12997
[19] Li X, Lu S Y, Xiong Z G, Hu Y, Ma D, Lou W Q, Peng C, Shen M W and Shi X Y 2019 Adv. Sci. 08 August
[20] Zhang L, Wan X N, Duan W J, Qiu H, Hou J Q, Wang X R, Li H and Du X Y 2019 J. Nanosci. Nanotechnol. 19 7664
[21] Mahmudzadeh M, Yari H, Ramezanzadeh B and Mahdavian M 2019 J. Indus. Engi. Chem. 78 125
[22] Pena-Bahamonde J, San-Miguel V, Baselga J, Fernandez-Blazquez J P, Gedler G, Ozisik R and Cabanelas J C 2019 Carbon 151 84
[23] Song N N, Yang H T, Ren X, Li Z A, Luo Y, Shen J, Dai W, Zhang X Q and Cheng Z H 2013 Nanoscale 5 2804
[24] Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339
[25] Liang Y, Wu D, Feng X and Müllen K 2009 Adv. Mater. 21 1679
[26] Guo S J and Sun S H 2012 J. Am. Chem. Soc. 134 2492
[27] Ma R S, Huan Q, Wu L M, Yan J H, Zhang Y Y, Bao L H, Liu Y Q, Du S X and Gao H J 2017 Chin. Phys. B 26 066801
[28] Guo H, Wang X Y, Bao D L, Lu H L, Zhang Y Y, Li G, Wang Y L, Du S X and Gao H J 2019 Chin. Phys. B 28 078103
[29] Tung V C, Allen M J, Yang Y and Kaner R B 2009 Nat. Nano 4 25
[30] Song N N, Yang H T, Liu H L, Ren X, Ding H F, Zhang X Q and Cheng Z H 2013 Sci. Rep. 3 3161
[31] Naito Y and Suetake K 1971 IEEE Trans. Microwave Theory Tech. 19 65
[32] Davalos A L and Zanette A 1999 Fundamentals of Electromagnetism
[33] Kong L, Yin X, Zhang Y, Yuan X, Li Q, Ye F, Cheng L and Zhang L 2013 J. Phys. Chem. C 117 19701
[34] Xue D S, Li F S, Fan X L and Wen F S 2008 Chin. Phys. Lett. 25 4128
[35] Li X P, Deng Z M, Li Y, Zhang H B, Zhao S, Zhang Y, Wu X Y and Yu Z Z 2019 Carbon 147 172
[36] Tang J M, Liang N, Wang L, Li J, Tian G, Zhang D, Feng S H and Yue H J 2019 Carbon 152 575
[1] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[2] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[3] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[4] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[5] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[6] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[7] First-principles insight into Li and Na ion storage in graphene oxide
Shu-Ying Zhong(钟淑英), Jing Shi(石晶), Wen-Wei Luo(罗文崴), Xue-Ling Lei(雷雪玲). Chin. Phys. B, 2019, 28(7): 078201.
[8] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[9] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
[10] Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser
Zhen-Dong Chen(陈振东), Yong-Gang Wang(王勇刚), Lu Li(李璐), Rui-Dong Lv(吕瑞东), Liang-Lei Wei(韦良雷), Si-Cong Liu(刘思聪), Jiang Wang(王江), Xi Wang(王茜). Chin. Phys. B, 2018, 27(8): 084206.
[11] Free-standing, curled and partially reduced graphene oxide network as sulfur host for high-performance lithium-sulfur batteries
Hui-Liang Chen(陈辉亮), Zhuo-Jian Xiao(肖卓建), Nan Zhang(张楠), Shi-Qi Xiao(肖仕奇), Xiao-Gang Xia(夏晓刚), Wei Xi(席薇), Yan-Chun Wang(王艳春), Wei-Ya Zhou(周维亚), Si-Shen Xie(解思深). Chin. Phys. B, 2018, 27(6): 068101.
[12] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[13] Carboxyl graphene oxide solution saturable absorber for femtosecond mode-locked erbium-doped fiber laser
Rui-dong Lv(吕瑞东), Lu Li(李璐), Yong-gang Wang(王勇刚), Zhen-dong Chen(陈振东), Si-cong Liu(刘思聪), Xi Wang(王茜), Jiang Wang(王江), Yong-fang Li(李永放). Chin. Phys. B, 2018, 27(11): 114214.
[14] Simulation research on effect of magnetic nanoparticles on physical process of magneto-acoustic tomography with magnetic induction
Xiao-Heng Yan(闫孝姮), Ying Zhang(张莹), Guo-Qiang Liu(刘国强). Chin. Phys. B, 2018, 27(10): 104302.
[15] Structural and optical properties of thermally reduced graphene oxide for energy devices
Ayesha Jamil, Faiza Mustafa, Samia Aslam, Usman Arshad, Muhammad Ashfaq Ahmad. Chin. Phys. B, 2017, 26(8): 086501.
No Suggested Reading articles found!