Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 093701    DOI: 10.1088/1674-1056/ab3448
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Dynamical properties of ultracold Bose atomic gases in one-dimensional optical lattices created by two schemes

Jiang Zhu(朱江), Cheng-Ling Bian(边成玲), Hong-Chen Wang(王红晨)
College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
Abstract  

An optical lattice could be produced either by splitting an input light (splitting scheme) or by reflecting the input light by a mirror (retro-reflected scheme). We study quantum dynamical properties of an atomic Bose-Einstein condensate (BEC) in the two schemes. Adopting a mean field theory and neglecting collision interactions between atoms, we find that the momentum and spatial distributions of BEC are always symmetric in the splitting scheme which, however, are asymmetric in the retro-reflected scheme. The reason for this difference is due to the local field effect. Furthermore, we propose an effective method to avoid asymmetric diffraction.

Keywords:  optical lattice      Bose-Einstein condensate      local field effect  
Received:  24 February 2019      Revised:  08 June 2019      Accepted manuscript online: 
PACS:  37.10.Jk (Atoms in optical lattices)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
  42.25.Fx (Diffraction and scattering)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11764012, 11565011, 11665010, 61864002, and 11805047) and the Natural Science Foundation of Hainan Province, China (Grant No. 20165197).

Corresponding Authors:  Jiang Zhu     E-mail:  aresjiangzhu@163.com

Cite this article: 

Jiang Zhu(朱江), Cheng-Ling Bian(边成玲), Hong-Chen Wang(王红晨) Dynamical properties of ultracold Bose atomic gases in one-dimensional optical lattices created by two schemes 2019 Chin. Phys. B 28 093701

[42] Mendonça J T and Kaiser R 2012 Phys. Rev. Lett. 108 033001
[1] Lan Z, Zhao Y, Barker P F and Lu W 2010 Phys. Rev. A 81 013419
[43] Ostermann S, Piazza F and Ritsch H 2016 Phys. Rev. X 6 021026
[2] Millen J, Fonseca P Z G, Mavrogordatos T, Monteiro T S and Barker P F 2015 Phys. Rev. Lett. 114 123602
[44] Ovchinnikov Y B, Müller J H, Doery M R, Vredenbregt E J D, Helmerson K, Rolston S L and Phillips W D 1999 Phys. Rev. Lett. 83 284
[3] Wei C H and Yan S H 2017 Chin. Phys. B 26 080701
[45] Morice O, Castin Y and Dalibard J 1995 Phys. Rev. A 51 3896
[4] Reichsöllner L, Schindewolf A, Takekoshi T, Grimm R and Nägerl H 2017 Phys. Rev. Lett. 118 073201
[46] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[5] McDonald M, McGuyer B H, Apfelbeck F, Lee C H, Majewska I, Moszynski R and Zelevinsky T 2016 Nature 535 122
[47] Karpov S and Stolyarov S 1993 Phys.-Usp. 36 1
[6] Notermans R P M J W, Rengelink R J and Vassen W 2016 Phys. Rev. Lett. 117 213001
[7] McGuyer B H, McDonald M, Iwata G Z, Tarallo M G, Grier A T, Apfelbeck F and Zelevinsky T 2015 New J. Phys. 17 055004
[8] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
[9] Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y and Chang H 2018 Chin. Phys. B 27 023701
[10] Chen N, Zhou M, Chen H Q, Fang S, Huang L Y, Zhang X H, Gao Q, Jiang Y Y, Bi Z Y, Ma L S and Xu X Y 2013 Chin. Phys. B 22 090601
[11] Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179
[12] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[13] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[14] Eiermann B, Anker T, Albiez M, Taglieber M, Treutlein P, Marzlin K P and Oberthaler M K 2004 Phys. Rev. Lett. 92 230401
[15] Hamner C, Zhang Y P, Khamehchi M A, Davis M J and Engels P 2015 Phys. Rev. Lett. 114 070401
[16] Abend S, Gebbe M, Gersemann M, Ahlers H, Müntinga H, Giese E, Gaaloul N, Schubert C, Lämmerzahl C, Ertmer W, Schleich W P and Rasel E M 2016 Phys. Rev. Lett. 117 203003
[17] Cladé P, Mirandes E, Cadoret M, Guellati-Khélifa S, Schwob C, Nez F, Julien L and Biraben F 2006 Phys. Rev. Lett. 96 033001
[18] Jürgensen O, Meinert F, Mark M J, Nägerl H and Lühmann D 2014 Phys. Rev. Lett. 113 193003
[19] Tie L and Xue J K 2011 Chin. Phys. B 20 120311
[20] Kolovsky A R 2018 Phys. Rev. A 98 013603
[21] Kolovsky A R 2011 Europhys. Lett. 93 20003
[22] Roscilde T 2014 Phys. Rev. Lett. 112 110403
[23] Parker C V, Ha L C and Chin C 2013 Nature Phys. 9 769
[24] Zheng W, Liu B, Miao J, Chin C and Zhai H 2014 Phys. Rev. Lett. 113 155303
[25] Lüschen H P, Scherg S, Kohlert T, Schreiber M, Bordia P, Li X, Sarma S D and Bloch I 2018 Phys. Rev. Lett. 120 160404
[26] Adhikari S K and Salasnich L 2009 Phys. Rev. A 80 023606
[27] Salger T, Grossert C, Kling S and Weitz M 2011 Phys. Rev. Lett. 107 240401
[28] Li T C, Kelkar H, Medellin D and Raizen M G 2008 Opt. Express 16 5465
[29] Fallani L, Fort C, Lye J E and Inguscio M 2005 Opt. Express 13 4303
[30] Wilkinson S R, Bharucha C F, Fischer M C, Madison K W, Morrow P R, Niu Q, Sundaram B and Raizen M G 1997 Nature 387 575
[31] Wilkinson S R, Bharucha C F, Madison K W, Niu Q and Raizen M G 1996 Phys. Rev. Lett. 76 4512
[32] Verkerk P, Meacher D R, Coates A B, Courtois J Y, Guibal S, Lounis B, Salomon C and Grynberg G 1994 Europhys. Lett. 26 171
[33] Haller E, Hudson J, Kelly A, Cotta D A, Peaudecerf B, Bruce G D and Kuhr S 2015 Nature Phys. 11 738
[34] Wirth G, Olschläger M and Hemmerich A 2011 Nature Phys. 7 171
[35] Straatsma C J E, Ivory M K, Duggan J, Ramirez-Serrano J, Anderson D Z and Salim E A 2015 Opt. Lett. 40 3368
[36] Poli N, Tarallo M G, Schioppo M, Oates C W and Tino G M 2009 Appl. Phys. B 97 27
[37] Dahan M B, Peik E, Reichel J, Castin Y and Salomon C 1996 Phys. Rev. Lett. 76 4508
[38] Martin P J, Oldaker B G, Miklich A H and Pritchard D E 1988 Phys. Rev. Lett. 60 515
[39] Zhu J, Dong G J, Shneider M N and Zhang W P 2011 Phys. Rev. Lett. 106 210403
[40] Dong G J, Zhu J, Zhang W P and Malomed B A 2013 Phys. Rev. Lett. 110 250401
[41] Robb G R M, Tesio E, Oppo G L, Firth W J, Ackemann T and Bonifacio R 2015 Phys. Rev. Lett. 114 173903
[42] Mendonça J T and Kaiser R 2012 Phys. Rev. Lett. 108 033001
[43] Ostermann S, Piazza F and Ritsch H 2016 Phys. Rev. X 6 021026
[44] Ovchinnikov Y B, Müller J H, Doery M R, Vredenbregt E J D, Helmerson K, Rolston S L and Phillips W D 1999 Phys. Rev. Lett. 83 284
[45] Morice O, Castin Y and Dalibard J 1995 Phys. Rev. A 51 3896
[46] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[47] Karpov S and Stolyarov S 1993 Phys.-Usp. 36 1
[1] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[2] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[3] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[4] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[5] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[6] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[7] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[8] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[9] Peierls-phase-induced topological semimetals in an optical lattice: Moving of Dirac points, anisotropy of Dirac cones, and hidden symmetry protection
Jing-Min Hou(侯净敏). Chin. Phys. B, 2020, 29(12): 120305.
[10] Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap
Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华). Chin. Phys. B, 2020, 29(11): 116701.
[11] Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis
Yu-Qin Yao(姚玉芹)† and Ji Li(李吉). Chin. Phys. B, 2020, 29(10): 103701.
[12] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[13] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
[14] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
[15] Domain walls and their interactions in a two-component Bose-Einstein condensate
Ling-Zheng Meng(孟令正), Yan-Hong Qin(秦艳红), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2019, 28(6): 060502.
No Suggested Reading articles found!