Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 097503    DOI: 10.1088/1674-1056/ab3441
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic properties of the double perovskite compound Sr2YRuO6

N. EL Mekkaoui1, S. Idrissi1, S. Mtougui1, I. EL Housni1, R. Khalladi1, S. Ziti2, H. Labrim3, L. Bahmad1
1 Laboratoire de la Matière Condensée et des Sciences Interdisciplinaires(LaMCScI), Mohammed V University, Faculty of Sciences, B. P. 1014 Rabat, Morocco;
2 Intelligent Processing and Security of Systems, Mohammed V University in Rabat, Faculty of Sciences, B. P. 1014 Rabat, Morocco;
3 USM/DERS/Centre National de l'Energie, des Sciences et des Techniques Nucléaires(CNESTEN), Rabat, Morocco
Abstract  

We study the magnetic properties of the double perovskite ruthenate compound Sr2YRuO6 using Monte Carlo simulations (MCS). We elaborate the ground state phase diagrams for all possible and stable configurations. The magnetizations and the susceptibilities as a function of temperature for the studied system are also reported. The effects of the exchange coupling interactions and the crystal field are examined and discussed. On the other hand, since the compound Sr2YRuO6 exhibits an antiferromagnetic behavior, we find its Néel temperature, TN ≈ 31 K, which is in good agreement with the experimental results in the literature. To complete this study, the hysteresis loops and the coercive field as a function of the external magnetic field are also obtained for fixed values of the physical parameters.

Keywords:  Monte Carlo      Ising model      antiferromagnetics      magnetic properties of nanostructures  
Received:  15 February 2019      Revised:  10 July 2019      Accepted manuscript online: 
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  05.10.Ln (Monte Carlo methods)  
  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
  75.50.Ee (Antiferromagnetics)  
Corresponding Authors:  N. EL Mekkaoui, L. Bahmad     E-mail:  n.elmekkaoui@gmail.com;bahmad@fsr.ac.ma

Cite this article: 

N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad Magnetic properties of the double perovskite compound Sr2YRuO6 2019 Chin. Phys. B 28 097503

[1] Singh R and Tomy C 2008 Phys. Rev. B 78 024432
[2] Donohue P C and McCann E L 1977 Mater. Res. Bull. 12 519
[3] Kuz'min E V, Ovchinnikov S G and Singh D J 2003 J. Exp. Theor. Phys. 96 1124
[4] Dow J D and Harshman D R 2003 Braz. J. 33 681
[5] Blackstead H A, Dow J D, Harshman D R, Yelon W B, Chen M X, Wu M K, Chen D Y, Chien F Z and Pulling D B 2001 Phys. Rev. B 63 214412
[6] Harshman D R, Kossler W J, Greer A J, Stronach C E, Koster E, Hitti B, Wu M K, Chen D Y, Chien F Z, Blackstead H A and Dow J D 2000 Physica B 289 360
[7] Harshman D R, Kossler W J, Greer A J, Noakes D R, Stronach C E, Koster E, Wu M K, Chien F Z, Franck J P, Dow J D and Isaac I 2003 Phys. Rev. B 67 054509
[8] Demarco M, Blackstead H A, Dow J D, Wu M K, Chen D Y, Chien F Z, Haka M, Toorongian S and Fridmann J 2000 Phys. Rev. B 62 301
[9] Rao S M, Srivastava J K, Wu M K, Mok B H, Chen C L, Ling M C, Liu H L, Chen Y Y and Ho J C 2011 J. Supercond. Nov. Magn. 24 1249
[10] Rao S M, Wu M K, Srivastava J K, Mok B H, Yen N Y, Lin H Y, Tang H Y, Ling M C and Liu H L 2006 Cryst. Res. Technol. 41 859
[11] Bernardo P L, Ghivelder L, Amorim H S, Neumeier J J and García S 2015 New J. Phys. 17 103007
[12] Galstyan E, Xue Y Y, Iliev M N, Sun Y and Chu C W 2007 Phys. Rev. B 76 014501
[13] Serrate D, De Teresa J M and Ibarra M R 2007 J. Phys.:Condens. Matter 19 023201
[14] Mtougui S, Khalladi R, Ziti S, Labrim H and Bahmad L 2018 Superlattices Microstruct. 123 111
[15] Mtougui S, Khalladi R, El Mekkaoui N, El Housni I, Idrissi S, Bahmad L, Ziti S and Labrim H 2018 Comput. Condens. Matter 17 e00329
[16] Mtougui S, Khalladi R, El Mekkaoui N, El Housni I, Idrissi S, Ziti S, Labrim H and Bahmad L 2018 Comput. Condens. Matter 17 e00331
[17] Idrissi S, Khalladi R, Ziti S, El Mekkaoui N, Mtougui S, Labrim H, El Housni I and Bahmad L 2019 Physica B 562 116
[18] Idrissi S, Bahmad L, Khalladi R, El Housni I, El Mekkaoui N, Mtougui S, Labrim H and Ziti S 2019 Chin. J. Phys. 60 549
[19] Idrissi S, Bahmad L, Khalladi R, El Housni I, El Mekkaoui N, Mtougui S, Labrim H and Ziti S 2019 Chin. J. Phys. 60 549
[20] Idrissi S, Labrim H, Ziti S, Khalladi R, El Mekkaoui N, El Housni I, Mtougui S and Bahmad L 2019 J. Electron. Mater. 48 3579
[21] El Housni I, Labrim H, El Mekkaoui N, Idrissi S, Khalladi R, Mtougui S, Ziti S and Bahmad L 2019 Spin 09 1950002
[22] Idrissi S, Khalladi R, Mtougui S, Ziti S, Labrim H, El Housni I, El Mekkaoui N and Bahmad L 2019 Physica A 523 714
[23] Idrissi S, Ziti S, Labrim H, Khalladi R, Mtougui S, El Mekkaoui N, El Housni I and Bahmad L 2019 Physica A 527 121406
[24] Khalladi R, Labrim H, Idrissi S, Mtougui S, El Housni I, Ziti S, El Mekkaoui N and Bahmad L 2019 Solid State Commun. 290 42
[25] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[26] Aguirre M H, Logvinovich D, Bocher L, Robert R, Ebbinghaus S G and Weidenkaff A 2009 Acta Mater. 57 108
[27] Naji S, Benyoussef A, El Kenz A, Ez-Zahraouy H and Loulidi M 2012 Phys. A Stat. Mech. Its Appl. 391 3885
[28] Labrim H, Jabar A, Belhaj A, Ziti S, Bahmad L, Laânab L and Benyoussef A 2015 J. Alloys Compd. 641 37
[29] Masrour R, Bahmad L and Benyoussef A 2012 J. Magn. Magn. Mater. 324 3991
[30] Miller R G 1974 Biometrika 61 1
[31] Folcke E, Le Breton J M, Lefebvre W, Bran J, Lardé R, Golkar F and Shield J E 2013 J. Appl. Phys. 113 183903
[32] Chen J Y, Xu H J and Coey J M D 2014 Appl. Phys. Lett. 104 152405
[33] Lestrer Clinton barnsley 2012 Exchange Bias in Manganese Alloys with Mixed Magnetic Behaviour (PhD Dissertation) (Brisbane:Griffith University)
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[3] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[4] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
[5] Solving quantum rotor model with different Monte Carlo techniques
Weilun Jiang(姜伟伦), Gaopei Pan(潘高培), Yuzhi Liu(刘毓智), and Zi-Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(4): 040504.
[6] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[7] Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
Yueshui Zhang(张越水) and Lei Wang(王磊). Chin. Phys. B, 2022, 31(11): 110205.
[8] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[9] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[10] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[11] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[12] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[13] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[14] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[15] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
No Suggested Reading articles found!