Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 088701    DOI: 10.1088/1674-1056/28/8/088701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of bismuth on structural and dielectric properties of cobalt-cadmium spinel ferrites fabricated via micro-emulsion route

Furhaj Ahmed Sheikh1, Muhammad Khalid1, Muhammad Shahzad Shifa2, H M Noor ul Huda Khan Asghar1, Sameen Aslam1, Ayesha Perveen1, Jalil ur Rehman1, Muhammad Azhar Khan3, Zaheer Abbas Gilani1
1 Department of Physics, Balochistan University of Information Technology, Engineering & Management Sciences, Quetta 87300, Pakistan;
2 Department of Physics, Government College University, Faisalabad 38000, Pakistan;
3 Department of Physics, The Islamia University of Bahawalpur 63100, Pakistan
Abstract  Spinel ferrites have a significant role in high-tech applications. In the present work nano-crystalline ferrites having general formula Co0.5Cd0.5BixFe2-xO4 with (x=0.0, 0.05, 0.1, 0.15, 0.2, and 0.25) are synthesized via micro-emulsion route. Powder x-ray diffraction (XRD) studies discover the FCC spinel structure. Crystalline size is calculated in a range of 11 nm-15 nm. Lattice parameter calculations are reduced due to its substitution which leads to the exchange of large ionic radius of Fe3+ for small ionic radius of Bi3+. The x-ray density is analyzed to increase with doping. Fourier transform infrared spectroscopy (FTIR) is performed to analyze absorption band spectra. The two absorption bands are observed in a range of 400 cm-1-600 cm-1, and they are the characteristic feature of spinel structure. Thermo-gravimetric analysis (TGA) reveals the total weight loss of nearly 1.98%. Dielectric analysis is carried out by impedance analyzer in a frequency span from 1 MHz to 3 GHz by using the Maxwell Wagner model. Dielectric studies reveal the decrease of dielectric parameters. The alternating current (AC) conductivity exhibits a plane behavior in a low frequency range and it increases with the applied frequency increasing. This is attributed to the grain effects in a high frequency range or may be due to the reduction of porosity. Real and imaginary part of impedance show the decreasing trend which corresponds to the grain boundary action. The imaginary modulus shows the occurrence of peak that helps to understand the interfacial polarization. Cole-Cole graph shows a single semicircle which confirms that the conduction mechanism is due to the grain boundaries at low frequency. Dielectric studies reveal the applicability of these ferrites in high frequency equipment, microwave applications, high storage media, and semiconductor devices.
Keywords:  Co-ferrite      nanocrystalline ferrites      XRD      microemulsion      dielectric properties  
Received:  22 March 2019      Revised:  12 June 2019      Published:  05 August 2019
PACS:  87.19.rf (Dielectric properties)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  47.54.Jk (Materials science applications)  
Corresponding Authors:  Zaheer Abbas Gilani     E-mail:  zagilani2002@yahoo.com,zaheer.abbas@buitms.edu.pk

Cite this article: 

Furhaj Ahmed Sheikh, Muhammad Khalid, Muhammad Shahzad Shifa, H M Noor ul Huda Khan Asghar, Sameen Aslam, Ayesha Perveen, Jalil ur Rehman, Muhammad Azhar Khan, Zaheer Abbas Gilani Effects of bismuth on structural and dielectric properties of cobalt-cadmium spinel ferrites fabricated via micro-emulsion route 2019 Chin. Phys. B 28 088701

[37] Brightlin B and Balamurugan S 2016 Appl. Nanosci. 6 1199
[1] Iqbal M A, Islam M U, Ali I, Khan M A, Sadiq I and Ali Ihsan 2014 J. Alloys Compd. 586 404
[38] Ghasemi A and Mousavinia M 2014 Ceram. Int. 40 2825
[2] Yafet Y and Kittel C 1952 Phys. Rev. 87 290
[39] Karimi Z, Mohammadifar Y, Shokrollahi H, et al. 2014 J. Magn. Magn. Mater. 361 150
[3] Jiang J, Yang J M and Li L C 2007 Physica B: Condens. Matter 399 105
[40] Hemeda O 2004 Turkish J. Phys. 28 121
[4] Wang Z, Jiang W, Li S X and Tong J S 2016 Nucl. Instrum. Methods Phys. Res. B 366 1
[41] Orak I, Kocyigit A and Alindal Ş 2017 Chin. Phys. B 26 028102
[5] Wang K, Si N, Zhang Y L, Guo A B and Jiang W 2019 Vacuum 165 105
[6] Wang K, Jiang W, Chen J N and Huang J Q 2016 Superlattices and Microstructures 97 116
[42] Khan M A, Sabir M, Mahmood A, et al. 2014 J. Magn. Magn. Mater. 360 188
[7] Li M J, Xu Z P, Li Z B, Chen Y, Guo J W, Huo H M, Zhou H Y, Huangfu H C, Cao Z H and Wang H Y 2016 Crystal Research and Technology 51 696
[43] Singh N, Agarwal A and Sanghi S 2011 Curr. Appl. Phys. 11 783
[8] Fu Y P, Hung D S and Yao Y D 2009 Ceram. Int. 35 2179
[44] Shkir M, Ganesh V, AlFaify S, Yahia I S and Anis M 2018 Chin. Phys. B 27 054216
[9] Al-Hilli M F, Li S and Kassim K S 2012 J. Magn. Magn. Mater. 324 873
[45] Jalaiah K, Babub K V, Babu K R, et al. 2018 Chin. J. Phys. 56 2039
[10] Singh R P and Venkataraju C 2018 Chin. J. Phys. 56 2218
[46] Yadav R S, Kuřitka I, Vilcakova J, et al. 2017 Adv. Nat. Sci. 8 045002
[11] Zi Z F, Sun Y P, Zhu X B, Yang Z R, Dai J M and Song W H 2009 J. Magn. Magne. Mater. 321 1251
[47] Costa M M, Pires G F M Jr, Terezo A J, Graça M P F and Sombra A S B 2011 J. Appl. Phys. 110 034107
[12] Grigorova M, Blythe H J, Blaskov V, et al. 1998 J. Magn. Magn. Mater. 183 163
[48] Joshi J H, Kanchan D K, Joshi M J, Jethva H O and Parikh K D 2017 Mater. Res. Bull. 93 63
[13] Shenker H 1957 Phys. Rev. 107 1246
[49] Rodrigues H O, Junior G F M P, Sales A J M, et al. 2011 Physica B: Condens. Matter 406 2532
[14] Reddy C V, Prabhakar Vattikuti S V, Ravikumar R V S S, et al. 2015 J. Magn. Magn. Mater. 394 70
[50] Sujatha C, Reddy K V, Babu K S, et al. 2013 J. Phys. Chem. Solids 74 917
[15] Salunkhe A B, Khot V M, Phadatare M R and Pawar S H 2012 J. Alloys Compd. 514 91
[16] Maaz K, Mumtaz A, Hasanain S K and Ceylan A 2007 J. Magn. Magn. Mater. 308 289
[17] Naidek K P, Bianconi F, da Rocha T C R, et al. 2011 J. Colloid Interf. Sci. 358 39
[18] Cedeño-Mattei Y and Perales-Pérez O 2009 Microelectron. J. 40 673
[19] Fannin P C, Marin C N, Malaescu I, et al. 2011 Mater. Design 32 1600
[20] Zhang Y, Yang Z, Yin D, Liu Y, Fei C L, Xiong R, Shi J and Yan G L 2010 J. Magn. Magn. Mater. 322 3470
[21] Sajjia M, Oubaha M, Prescott T and Olabi A G 2010 J. Alloys Compd. 506 400
[22] Singhal S, Jauhar S, Lakshmi N and Bansal S 2013 J. Mol. Struct. 1038 45
[23] Prabhakar Vattikuti S V, Byon C, Shim J, et al. 2015 J. Magn. Magn. Mater. 393 132
[24] Junaid M, Khan M A, Iqbal F, et al. 2016 J. Magn. Magn. Mater. 419 338
[25] Mohanty V, Cheruku R, Vijayan L and Govindaraj G 2014 J. Mater. Sci. Technol. 30 335
[26] Gilani Z A, Warsi M F, Khan M A, et al. 2015 Physica E 73 169
[27] Sun C and Sun K 2007 Physica B: Condens. Matter 391 335
[28] Motavallian P, Abashtb B, Mirzaeea O and Abdollah-Pour H 2019 Chin. J. Phys. 57 6
[29] Wang J P, Chen Q D, Li S L, Ji Y J, Mu W Y, Feng W W, Zeng G J, Liu Y W and Liang E J 2018 Chin. Phys. B 27 066501
[30] Ali R, Mahmood A, Khan M A, et al. 2014 J. Alloys Compd. 584 363
[31] Lodhi M Y, Mahmood K, Mahmood A, et al. 2014 Curr. Appl. Phys. 14 716
[32] Gowreesan S and Kumar A R 2018 Chin. J. Phys. 56 1262
[33] Iqbal M A, Islam M, Ashiq M N, et al. 2013 J. Alloys Compd. 579 181
[34] Anjum S, Sehar F, Bashir F, Awan M S and Mustafa Z 2015 Mater. Today 2 5182
[35] Chavan P, Naik L R, Belavi P B, Chavan G N and Kotnala R K 2017 J. Alloys Compd. 694 607
[36] Chandrasekaran G, Selvanandan S and Manivannane K 2004 J. Mater. Sci. 15 15
[37] Brightlin B and Balamurugan S 2016 Appl. Nanosci. 6 1199
[38] Ghasemi A and Mousavinia M 2014 Ceram. Int. 40 2825
[39] Karimi Z, Mohammadifar Y, Shokrollahi H, et al. 2014 J. Magn. Magn. Mater. 361 150
[40] Hemeda O 2004 Turkish J. Phys. 28 121
[41] Orak I, Kocyigit A and Alindal Ş 2017 Chin. Phys. B 26 028102
[42] Khan M A, Sabir M, Mahmood A, et al. 2014 J. Magn. Magn. Mater. 360 188
[43] Singh N, Agarwal A and Sanghi S 2011 Curr. Appl. Phys. 11 783
[44] Shkir M, Ganesh V, AlFaify S, Yahia I S and Anis M 2018 Chin. Phys. B 27 054216
[45] Jalaiah K, Babub K V, Babu K R, et al. 2018 Chin. J. Phys. 56 2039
[46] Yadav R S, Kuřitka I, Vilcakova J, et al. 2017 Adv. Nat. Sci. 8 045002
[47] Costa M M, Pires G F M Jr, Terezo A J, Graça M P F and Sombra A S B 2011 J. Appl. Phys. 110 034107
[48] Joshi J H, Kanchan D K, Joshi M J, Jethva H O and Parikh K D 2017 Mater. Res. Bull. 93 63
[49] Rodrigues H O, Junior G F M P, Sales A J M, et al. 2011 Physica B: Condens. Matter 406 2532
[50] Sujatha C, Reddy K V, Babu K S, et al. 2013 J. Phys. Chem. Solids 74 917
[1] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[2] Structure instability-induced high dielectric properties in[001]-oriented 0.68Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 crystals
Xiao-Juan Li(李晓娟), Xing Fan(樊星), Zeng-Zhe Xi(惠增哲), Peng Liu(刘鹏), Wei Long(龙伟), Pin-Yang Fang(方频阳), Rui-Hua Nan(南瑞华). Chin. Phys. B, 2019, 28(5): 057701.
[3] Analysis of the inhomogeneous barrier and phase composition of W/4H-SiC Schottky contacts formed at different annealing temperatures
Sheng-Xu Dong(董升旭), Yun Bai(白云), Yi-Dan Tang(汤益丹), Hong Chen(陈宏), Xiao-Li Tian(田晓丽), Cheng-Yue Yang(杨成樾), Xin-Yu Liu(刘新宇). Chin. Phys. B, 2018, 27(9): 097305.
[4] Phase transition and near-zero thermal expansion of Zr0.5Hf0.5VPO7
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Sai-Lei Li(李赛磊), Yan-Jun Ji(纪延俊), Wen-Ying Mu(穆文英), Wei-Wei Feng(冯伟伟), Gao-Jie Zeng(曾高杰), You-Wen Liu(刘友文), Er-Jun Liang(梁二军). Chin. Phys. B, 2018, 27(6): 066501.
[5] Structural, vibrational, optical, photoluminescence, thermal, dielectric, and mechanical studies on zinc (tris) thiourea sulfate single crystal: A noticeable effect of organic dye
Mohd Shkir, V Ganesh, S AlFaify, I S Yahia, Mohd Anis. Chin. Phys. B, 2018, 27(5): 054216.
[6] Electrical and dielectric characterization of Au/ZnO/n—Si device depending frequency and voltage
I Orak, A Kocyigit, Ş Alındal. Chin. Phys. B, 2017, 26(2): 028102.
[7] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
[8] Evaluation of threading dislocation density of strained Ge epitaxial layer by high resolution x-ray diffraction
Yuan-Hao Miao(苗渊浩), Hui-Yong Hu(胡辉勇), Xin Li(李鑫), Jian-Jun Song(宋建军), Rong-Xi Xuan(宣荣喜), He-Ming Zhang(张鹤鸣). Chin. Phys. B, 2017, 26(12): 127309.
[9] Evaluation of electrical and optical characteristics of ZnO/CdS/CIS thin film solar cell
Hadi Zarei, Rasoul Malekfar. Chin. Phys. B, 2016, 25(2): 027103.
[10] Nano structure evolution in P3HT:PC61BM blend films due to the effects of thermal annealing or by adding solvent
Fan Xing, Zhao Su-Ling, Chen Yu, Zhang Jie, Yang Qian-Qian, Gong Wei, Yuan Meng-Yao, Xu Zheng, Xu Xu-Rong. Chin. Phys. B, 2015, 24(7): 078401.
[11] Effect of deposition parameters on structural and mechanicalproperties of niobium nitride synthesized by plasma focus device
Jamil Siddiqui, Tousif Hussain, Riaz Ahmad, Nida Khalid. Chin. Phys. B, 2015, 24(6): 065204.
[12] Dielectric behaviors at microwave frequencies and Mössbauer effects of chalcedony, agate, and zultanite
Levent Parali, İsrafil Şabikoğlu, Jiri Tucek, Jiri Pechousek, Petr Novak, Jakub Navarik. Chin. Phys. B, 2015, 24(5): 059101.
[13] Synthesis of ZrSiN composite films using a plasma focus device
R. Ahmad, T. Hussain, I. A. Khan, R. S. Rawat. Chin. Phys. B, 2014, 23(6): 065204.
[14] Frequency and voltage-dependent electrical and dielectric properties of Al/Co-doped PVA/p-Si structures at room temperature
Ibrahim Yücedağ, Ahmet Kaya, Şemsettin Altındal, Ibrahim Uslu. Chin. Phys. B, 2014, 23(4): 047304.
[15] Dielectric and infrared properties of SrTiO3 single crystal doped by 3d (V, Mn, Fe, Ni) and 4f (Nd, Sm, Er) ions
S. Maletic, D. Maletic, I. Petronijevic, J. Dojcilovic, D. M. Popovic. Chin. Phys. B, 2014, 23(2): 026102.
No Suggested Reading articles found!