Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127309    DOI: 10.1088/1674-1056/26/12/127309
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Evaluation of threading dislocation density of strained Ge epitaxial layer by high resolution x-ray diffraction

Yuan-Hao Miao(苗渊浩), Hui-Yong Hu(胡辉勇), Xin Li(李鑫), Jian-Jun Song(宋建军), Rong-Xi Xuan(宣荣喜), He-Ming Zhang(张鹤鸣)
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  The analysis of threading dislocation density (TDD) in Ge-on-Si layer is critical for developing lasers, light emitting diodes (LEDs), photodetectors (PDs), modulators, waveguides, metal oxide semiconductor field effect transistors (MOSFETs), and also the integration of Si-based monolithic photonics. The TDD of Ge epitaxial layer is analyzed by etching or transmission electron microscope (TEM). However, high-resolution x-ray diffraction (HR-XRD) rocking curve provides an optional method to analyze the TDD in Ge layer. The theory model of TDD measurement from rocking curves was first used in zinc-blende semiconductors. In this paper, this method is extended to the case of strained Ge-on-Si layers. The HR-XRD 2θ/ω scan is measured and Ge (004) single crystal rocking curve is utilized to calculate the TDD in strained Ge epitaxial layer. The rocking curve full width at half maximum (FWHM) broadening by incident beam divergence of the instrument, crystal size, and curvature of the crystal specimen is subtracted. The TDDs of samples A and B are calculated to be 1.41×108 cm-2 and 6.47×108 cm-2, respectively. In addition, we believe the TDDs calculated by this method to be the averaged dislocation density in the Ge epitaxial layer.
Keywords:  HR-XRD      RPCVD      threading dislocation density (TDD)      etching pit density (EPD)  
Received:  24 April 2017      Revised:  05 September 2017      Accepted manuscript online: 
PACS:  73.61.At (Metal and metallic alloys)  
Fund: Project supported by the Research Plan in Shaanxi Province, China (Grant No. 2016GY-085), the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences (Grant No. 90109162905), the Fundamental Research Funds for the Central Universities (Grant No. 17-H863-04-ZT-001-019-01), and the National Natural Science Foundation of China (Grant Nos. 61704130 and 61474085).
Corresponding Authors:  Yuan-Hao Miao, Hui-Yong Hu     E-mail:  15336118340@163.com;huhy@xidian.edu.cn

Cite this article: 

Yuan-Hao Miao(苗渊浩), Hui-Yong Hu(胡辉勇), Xin Li(李鑫), Jian-Jun Song(宋建军), Rong-Xi Xuan(宣荣喜), He-Ming Zhang(张鹤鸣) Evaluation of threading dislocation density of strained Ge epitaxial layer by high resolution x-ray diffraction 2017 Chin. Phys. B 26 127309

[1] Soref R 2006 IEEE J. Sel. Topics Quantum Electron. 12 1678
[2] Liow T Y, Ang K W and Fang Q 2010 IEEE J. Sel. Top. Quantum Electron. 16 307
[3] Wang J and Lee S 2011 Sensors 11 696
[4] Srinivasan S, Liu A Y and Liang D 2017 Fiber Opt. Commun. 739
[5] Cheng R, Yin L and Wu H 2017 IEEE Electron Dev. Lett. 1 99
[6] Nagatomi Y, Tateyama T and Tanaka S 2017 Semicond. Sci. Tech 32 035001
[7] Arguirov T, Kittler M and Oehme M 2011 Solid State Phenomena Trans. Tech. Publications 178 25
[8] Klapdor-Kleingrothaus H V, Krivosheina I V and Titkova I V 2006 Mod. Phys. Lett. A 21 1257
[9] Kurtz A D, Kulin S A and Averbach B L 1956 Phys. Rev 101 1285
[10] Hordon M J and Averbach B L 1961 Acta Metal. 9 237
[11] Xu Z J 2012 Semiconductor Analysis and Detection, 2nd edn. (Beijing:Science Press) pp. 88-89(in Chinese)
[12] Warren B E 1959 Prog. Metal Phys. 8 147
[13] Scherrer P 1918 Nachrichten der Göttinger Gesellschaft 98 394
[14] Halliwell M A G, Lyons M H and Hill M J 1984 J. Crystal Growth 68 523
[15] Gay P, Hirsch P B and Kelly A 1953 Acta Metal. 1 315
[16] Houghton D C, Gibbings C J and Tuppen C G 1990 Appl. Phys. Lett. 56 460
[17] Huang S, Li C and Zhou Z 2012 Thin Solid Films 520 2307
[18] Shah V A, Dobbie A and Myronov M 2011 Solid-State Electron. 62 189
[19] Choi D, Ge Y and Harris J S 2008 J. Crystal Growth 310 4273
[20] Shah V A, Dobbie A and Myronov M 2011 Thin Solid Films 519 7911
[21] Hartmann J M, Papon A M and Destefanis V 2008 J. Crystal Growth 310 5287
[22] Hartmann J M, Abbadie A and Cherkashin N 2009 Semicond. Sci. Technol. 24 055002
[23] Tan Y H and Tan C S 2012 Thin Solid Films 520 2711
[24] Chen D, Xue Z and Wei X 2014 Appl. Surf. Sci. 299 1
[25] Lee K H, Jandl A and Tan Y H 2013 AIP Advances 3 092123
[26] Nguyen V H, Dobbie A and Myronov M 2013 J. Appl. Phys 114 154306
[27] Tan Y H, Bergkvist M and Tan C S 2012 ECS J. Solid State Sci. Technol. 1 117
[28] Bian J T, Xue Z Y and Chen D 2012 ECS Trans. 45 195
[29] Nguyen V H, Myronov M and Allred P 2014 IEEE 15th International Conference on Ultimate Integration on Silicon (ULIS) 121
[30] Hartmann J M, Aubin J and Bogumilowicz Y 2016 ECS Trans. 75 579
[1] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[2] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[3] Effects of rapid thermal annealing on crystallinity and Sn surface segregation of Ge1-xSnx films on Si (100) and Si (111)
Yuan-Hao Miao(苗渊浩), Hui-Yong Hu(胡辉勇), Jian-Jun Song(宋建军), Rong-Xi Xuan(宣荣喜), He-Ming Zhang(张鹤鸣). Chin. Phys. B, 2017, 26(12): 127306.
[4] Modulation of WNx/Ge Schottky barrier height by varying N composition of tungsten nitride
Wei Jiang-Bin (魏江镔), Chi Xiao-Wei (池晓伟), Lu Chao (陆超), Wang Chen (王尘), Lin Guang-Yang (林光杨), Wu Huan-Da (吴焕达), Huang Wei (黄巍), Li Cheng (李成), Chen Song-Yan (陈松岩), Liu Chun-Li (刘春莉). Chin. Phys. B, 2015, 24(7): 077306.
[5] Localization correction to the anomalous Hall effect in amorphous CoFeB thin films
Ding Jin-Jun (丁进军), Wu Shao-Bing (吴少兵), Yang Xiao-Fei (杨晓非), Zhu Tao (朱涛). Chin. Phys. B, 2015, 24(2): 027201.
[6] Phase transformation in Mg–Sb3Te thin films
Li Jun-Jian (李军建), Wang Guo-Xiang (王国祥), Chen Yi-Min (陈益敏), Shen Xiang (沈祥), Nie Qiu-Hua (聂秋华), Lü Ye-Gang (吕业刚), Dai Shi-Xun (戴世勋), Xu Tie-Feng (徐铁锋). Chin. Phys. B, 2014, 23(8): 087301.
[7] Different effects of grain boundary scattering on charge and heat transport in polycrystalline platinum and gold nanofilms
Ma Wei-Gang(马维刚), Wang Hai-Dong(王海东), Zhang Xing(张兴), and Takahashi Koji. Chin. Phys. B, 2009, 18(5): 2035-2040.
[8] Magnetic and electrical properties of zincblende CrAs
Chen Peng(陈鹏) and Takamura K. Chin. Phys. B, 2008, 17(6): 2204-2207.
[9] Yield strengths and stress induced crackles in copper films: effects of substrate and passivated layer
Zhang Jian-Min (张建民), Xu Ke-Wei (徐可为). Chin. Phys. B, 2004, 13(2): 205-211.
[10] FRINGE EFFECT ON CRITICAL CURRENT OF A GOLD FILM PERCOLATION SYSTEM
GE HONG-LIANG (葛洪良), ZENG YUE-WU (曾跃武), FENG CHUN-MU (冯春木), YE GAO-XIANG (叶高翔), ZHANG QI-RUI (张其瑞). Chin. Phys. B, 1997, 6(7): 526-530.
[11] ELECTRICAL TRANSPORT BEHAVIOR OF AN Au DIFFUSE FRINGE FILM PERCOLATION SYSTEM
FENG CHUN-MU (冯春木), GE HONG-LIANG (葛洪良), YU GAO-XIANG (叶高翔), ZHANG QI-RUI (张其瑞). Chin. Phys. B, 1996, 5(7): 538-543.
[12] THIRD-HARMONIC COEFFICIENT IN A BILATERAL ROUGH GOLD FILM PERCOLATION SYSTEM
YE GAO-XIANG (叶高翔), ZHANG QI-RUI (张其瑞), WEN ZI-LI (文自立), JIAO ZHENG-KUAN (焦正宽), ZHANG XUAN-JIA (张宣嘉), XU YU-QING (许宇庆). Chin. Phys. B, 1996, 5(3): 213-218.
No Suggested Reading articles found!