Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097305    DOI: 10.1088/1674-1056/27/9/097305

Analysis of the inhomogeneous barrier and phase composition of W/4H-SiC Schottky contacts formed at different annealing temperatures

Sheng-Xu Dong(董升旭)1,2, Yun Bai(白云)1, Yi-Dan Tang(汤益丹)1,2, Hong Chen(陈宏)1,2, Xiao-Li Tian(田晓丽)1, Cheng-Yue Yang(杨成樾)1, Xin-Yu Liu(刘新宇)1
1 High-Frequency High-Voltage Device and Integrated Circuits R & D Center, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China

The electrical characteristics of W/4H-SiC Schottky contacts formed at different annealing temperatures have been measured by using current-voltage-temperatures (I-V-T) and capacitance-voltage-temperatures (C-V-T) techniques in the temperature range of 25 ℃-175 ℃. The testing temperature dependence of the barrier height (BH) and ideality factor (n) indicates the presence of inhomogeneous barrier. Tung's model has been applied to evaluate the degree of inhomogeneity, and it is found that the 400 ℃ annealed sample has the lowest T0 of 44.6 K among all the Schottky contacts. The barrier height obtained from C-V-T measurement is independent of the testing temperature, which suggests a uniform BH. The x-ray diffraction (XRD) analysis shows that there are two kinds of space groups of W when it is deposited or annealed at lower temperature (≤ 500 ℃). The phase of W2C appears in the sample annealed at 600 ℃, which results in the low BH and the high T0. The 500 ℃ annealed sample has the highest BH at all testing temperatures, indicating an optimal annealing temperature for the W/4H-SiC Schottky rectifier for high-temperature application.

Keywords:  SiC      Schottky contact      inhomogeneity barrier      x-ray diffraction (XRD)  
Received:  24 February 2018      Revised:  16 June 2018      Accepted manuscript online: 
PACS:  73.40.Ns (Metal-nonmetal contacts)  

Project supported by the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences and the National Key Research and Development Program of China (Grant No. 2016YFB0100601).

Corresponding Authors:  Yun Bai     E-mail:

Cite this article: 

Sheng-Xu Dong(董升旭), Yun Bai(白云), Yi-Dan Tang(汤益丹), Hong Chen(陈宏), Xiao-Li Tian(田晓丽), Cheng-Yue Yang(杨成樾), Xin-Yu Liu(刘新宇) Analysis of the inhomogeneous barrier and phase composition of W/4H-SiC Schottky contacts formed at different annealing temperatures 2018 Chin. Phys. B 27 097305

[1] Geib K M, Wilson C, Long R G and Wilmsen C W 1990 J. Appl. Phys. 68 2796
[2] Trew R J 1997 Phys. Status Solidi A 162 409
[3] Roccaforte F, La Via F and Raineri V 2003 Appl. Phys. A 77 827
[4] Gupta S K, Azam A and Akhtar J 2011 Physica B 406 3030
[5] Marinova T, Kakanakova-Georgieva A, Krastev V, Kakanakov R, Neshev M, Kassamakova L, Noblanc O, Arnodo C, Cassette S and Brylinski C 1997 Mater. Sci. Eng. B 46 223
[6] Sze S M and Ng K K 2006 Physics of Semiconductor Devices (New York:Wiley) pp. 299
[7] Feng Z C 2013 SiC Power Materials:Devices and Applications (Berlin:Springer) pp. 63
[8] Tung R T 1992 Phys. Rev. B 45 13509
[9] Mönch W 1999 J. Vac. Sci. Technol. B 17 1867
[10] Schmitsdorf R, Kampen T and Mönch W 1997 J. Vac. Sci. Technol. B 15 1221
[11] Song Y, Van Meirhaeghe R, Laflere W and Cardon F 1986 Solid-State Electron. 29 633
[12] Maset E, Sanchis-Kilders E, Ejea J B, Ferreres A, Jordan J, Esteve V, Brosselard P, Jorda X, Vellvehi M and Godignon P 2009 IEEE Trans. Device Mater. Reliab. 9 557
[13] Kinoshita A, Ohyanagi T, Yatsuo T, Fukuda K, Okumura H and Arai K 2010 Mater. Sci. Forum 645 893
[14] Treu M, Rupp R, Kapels H and Bartsch W 2001 Mater. Sci. Forum 353 679
[15] Weiss R, Frey L and Ryssel H 2001 Appl. Surf. Sci. 184 413
[16] Berthou M, Godignon P, Montserrat J, Millan J and Planson D 2011 J. Electron. Mater. 40 2355
[17] Hamida A F, Ouennoughi Z, Sellai A, Weiss R and Ryssel H 2008 Semicond. Sci. Technol. 23 045005
[18] Geib K M, Wilson C, Long R G and Wilmsen C W 1990 J. Appl. Phys. 68 2796
[19] Rogowski J and Kubiak A 2015 Mater. Sci. Eng. B 191 57
[20] Rhoderick E H and Williams R H 1998 Metal-Semiconductor Contacts (2nd Edn.) (Oxford:Clarendon Press)
[21] Itoh A, Kimoto T and Matsunami H 1995 IEEE Electron. Dev. Lett. 16 280
[22] Cheung S and Cheung N 1986 Appl. Phys. Lett. 49 85
[23] Calcagno L, Ruggiero A, Roccaforte F and La Via F 2005 J. Appl. Phys. 98 023713
[24] Wang Y H, Zhang Y M, Zhang Y M, Song Q W and Jia R X 2011 Chin. Phys. B 20 087305
[25] Toumi S, Ferhat-Hamida A, Boussouar L, Sellai A, Ouennoughi Z and Ryssel H 2009 Microelectron. Eng. 86 303
[26] Ohdomari I and Tu K 1980 J. Appl. Phys. 51 3735
[27] Knoll L, Teodorescu V and Minamisawa R 2016 IEEE Electron. Dev. Lett. 37 1318
[1] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[2] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[3] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[4] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[5] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[8] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[9] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[10] Definition and expression of non-symmetric physical properties in space for uniaxial crystals
Xiaojie Guo(郭晓杰), Lijuan Chen(陈丽娟), Zeliang Gao(高泽亮), Xin Yin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2022, 31(9): 096103.
[11] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[12] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[13] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[14] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[15] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
No Suggested Reading articles found!