Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 034204    DOI: 10.1088/1674-1056/28/3/034204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface

Di Zhang(张迪), Xiangyu Cao(曹祥玉), Huanhuan Yang(杨欢欢), Jun Gao(高军), Shiqi Lv(吕世奇)
Air Force Engineering University, Xi'an 710077, China
Abstract  

A systematic study of the aperture efficiency and mode constituent for orbital angular momentum (OAM) vortex beam generated by digital metasurface is presented. The aperture efficiency and OAM spectrum are computed for different bit numbers. It is found that the aperture efficiency declines for digital metasurface due to the phase quantization error, especially for 1-bit device. Fortunately, the OAM spectrum is barely affected by phase quantization and the designated main mode keeps dominant for different bit numbers, indicating that high purity OAM vortex beam can be generated by digital metasurface. Besides, the influence of topological charge l is also investigated. For a fixed metasurface, the radiation performance deteriorates sharply with the growing of l and the parasitic OAM mode becomes dominant at certain angle. At last, a prototype of 1-bit metasurface was simulated, fabricated and measured in anechoic chamber. The simulation and experiment results verify the correctness of the numerical analysis.

Keywords:  orbital angular momentum (OAM)      efficiency      mode constituent      metasurface  
Received:  19 November 2018      Revised:  22 December 2018      Published:  05 March 2019
PACS:  42.50.Tx (Optical angular momentum and its quantum aspects)  
  42.79.Ag (Apertures, collimators)  
Corresponding Authors:  Xiangyu Cao     E-mail:  xiangyucaokdy@163.com

Cite this article: 

Di Zhang(张迪), Xiangyu Cao(曹祥玉), Huanhuan Yang(杨欢欢), Jun Gao(高军), Shiqi Lv(吕世奇) Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface 2019 Chin. Phys. B 28 034204

[1] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[2] Pu J X and Chen Z Y 2009 Chin. Phys. Lett. 26 034202
[3] Zhao S M, Ding J, Dong X L and Zheng B Y 2011 Chin. Phys. Lett. 28 124207
[4] Guo Z G and Yang G M 2017 IEEE Antennas Wireless Propag. Lett. 16 404
[5] Cui X Z, Yin X L, Chang Huan, Zhang Z C, Wang Y J and Wu G H 2017 Chin. Phys. B 26 114207
[6] Ji Z Y and Zhou G Q 2017 Chin. Phys. B 26 094202
[7] Shen Y Z, Yang J W, Meng H F, Dou W B and Hu S M 2018 Appl. Phys. Lett. 112 141901
[8] Thidé B, Then H, SjoHolm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H and Khamitova R 2007 Phys. Rev. Lett. 99 087701
[9] Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A and Romanato F 2012 New J. Phys. 14 033001
[10] Zhang C and Chen D 2017 IEEE Antennas Wireless Propag. Lett. 16 2316
[11] Lin M, Gao Y, Liu P and Liu J 2016 Electron. Lett. 52 1168
[12] Wei W L, Mahdjoubi K, Brousseau C and Emile O 2016 IET Microw. Antennas Propag. 10 1420
[13] Mahmouli F E and Walker S D 2013 IEEE Antennas Wireless Propag. Lett. 2 223
[14] Zhang Z F, Zheng S L, Jin X F, Chi H and Zhang X M 2016 IEEE Antennas Wireless Propag. Lett. 16 8
[15] Yu S, Li L, Shi G, Zhu C, Zhou X and Shi Y 2016 Appl. Phys. Lett. 108 121903
[16] Yu S, Li L, Shi G, Zhu C and Shi Y 2016 Appl. Phys. Lett. 108 241901
[17] Yu S, Li L and Shi G 2016 Appl. Phys. Express 9 082202
[18] Chen M L N, Jiang L J and Sha W E I 2018 IEEE Antennas Wireless Propag. Lett. 17 110
[19] Zhang K, Yuan Y Y, Zhang D W, Ding X M, Ratni B, Burokur S N, Lu M J, Tang K and Wu Q 2018 Opt. Express 26 1351
[20] Byun W J, Choi H D and Cho Y H 2017 Sci. Rep. 7 12805
[21] Xu B J, Wu C, Wei Z Y, Fan Y C and Li H Q 2016 Opt. Mater. Express 6 3940
[22] Giovampaola C D and Engheta N 2014 Nat. Mater. 13 1115
[23] Yang H H, Yang F, Xu S H, Li M K, Cao X Y, Gao J and Zheng Y J 2017 IEEE Antennas Wireless Propag. Lett. 16 302
[24] Zhao Y, Cao X Y, Gao J, Liu X and Li S J 2016 Opt. Express 24 11208
[25] Yang H H, Yang F, Cao X Y, Xu S H, Gao J, Chen X B, Li M K and Li T 2017 IEEE Trans. Antennas Propag. 65 3024
[26] Zhang D, Cao X Y, Yang H H, Gao J and Zhu X W 2018 Opt. Express 26 24804
[27] Nayeri P, Yang F and Elsherbeni A Z 2013 IEEE Antennas Propag. Magaine 55 127
[28] Meng X S, Wu J J, Wu Z S, Qu T and Yang L 2018 Opt. Express 26 23185
[29] Lei X Y and Cheng Y J 2017 IEEE Antennas Wireless Propag. Lett. 16 1357
[30] Jiang S, Chen C, Zhang H L and Chen W D 2018 Opt. Express 26 6466
[31] Zhang D, Cao X Y, Yang H H and Gao J 2018 IEEE Access 6 28691
[1] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[2] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[3] Novel CMOS image sensor pixel to improve charge transfer speed and efficiency by overlapping gate and temporary storage diffusing node
Cui Yang(杨翠), Guo-Liang Peng(彭国良), Wei Mao(毛维), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(1): 018502.
[4] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[5] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[6] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[7] Inhibiting radiative recombination rate to enhance quantum yields in a quantum photocell
Jing-Yi Chen(陈镜伊), Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2020, 29(6): 064207.
[8] Narrowband perfect terahertz absorber based on polar-dielectrics metasurface
Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章). Chin. Phys. B, 2020, 29(5): 054210.
[9] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
[10] Reconciliation for CV-QKD using globally-coupled LDPC codes
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端). Chin. Phys. B, 2020, 29(4): 040301.
[11] Ultra-wideband linear-to-circular polarization conversion metasurface
Bao-Qin Lin(林宝勤)†, Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新), Zu-Liang Wang(王祖良), Shi-Qi Huang(黄世奇), and Yan-Wen Wang(王衍文). Chin. Phys. B, 2020, 29(10): 104205.
[12] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[13] Pancharatnam-Berry metasurface for terahertz wave radar cross section reduction
Shao-He Li(李绍和), Jiu-Sheng Li(李九生). Chin. Phys. B, 2019, 28(9): 094210.
[14] Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses
Xiaolong Cai(蔡小龙), Dong Zhou(周东), Liang Cheng(程亮), Fangfang Ren(任芳芳), Hong Zhong(钟宏), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(9): 098503.
[15] Flexible broadband polarization converter based on metasurface at microwave band
Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春). Chin. Phys. B, 2019, 28(7): 074205.
No Suggested Reading articles found!