Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 016105    DOI: 10.1088/1674-1056/28/1/016105
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Versatile GaInO3-sheet with strain-tunable electronic structure, excellent mechanical flexibility, and an ideal gap for photovoltaics

Hui Du(杜慧)1,2, Shijie Liu(刘世杰)1,3, Guoling Li(李国岭)1, Liben Li(李立本)1, Xueshen Liu(刘学深)2, Bingbing Liu(刘冰冰)2,3
1 School of Physics and Engineering, and Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471003, China;
2 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
3 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  

Due to many remarkable physical and chemical properties, two-dimensional (2D) nanomaterials have become a hot spot in the field of condensed matter physics. In this paper, we have studied the structural, mechanical, and electronic properties of the 2D GaInO3 system by first-principles method. We find that 2D GaInO3 can exist stably at ambient condition. Molecular dynamic simulations show that GaInO3-sheet has excellent thermal stability and is stable up to 1100 K. Electronic structural calculations show that GaInO3-sheet has a band gap of 1.56 eV, which is close to the ideal band gap of solar cell materials, demonstrating great potential in future photovoltaic application. In addition, strain effect studies show that the GaInO3-sheet structure always exhibits a direct band gap under biaxial compressive strain, and as the biaxial compressive strain increases, the band gap gradually decreases until it is converted into metal. While biaxial tensile strain can cause the 2D material to transform from a direct band gap semiconductor into an indirect band gap semiconductor, and even to metal. Our research expands the application of the GaInO3 system, which may have potential application value in electronic devices and solar energy.

Keywords:  two-dimensional (2D) material      GaInO3-sheet      first-principles method      strain effect  
Received:  29 August 2018      Revised:  31 October 2018      Accepted manuscript online: 
PACS:  61.46.-w (Structure of nanoscale materials)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  61.82.Fk (Semiconductors)  
  62.23.Kn (Nanosheets)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11847094, 61764001, and U1404212), the Cheung Kong Scholars Programme of China, the Program of Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1132), and Open Project of State Key Laboratory of Superhard Materials (Jilin University), China (Grant No. 201703).We acknowledge the use of computing facilities at the High Performance Computing Center of Jilin University.

Corresponding Authors:  Guoling Li, Xueshen Liu, Bingbing Liu     E-mail:  liguoling@dicp.ac.cn;liuxs@jlu.edu.cn;liubb@jlu.edu.cn

Cite this article: 

Hui Du(杜慧), Shijie Liu(刘世杰), Guoling Li(李国岭), Liben Li(李立本), Xueshen Liu(刘学深), Bingbing Liu(刘冰冰) Versatile GaInO3-sheet with strain-tunable electronic structure, excellent mechanical flexibility, and an ideal gap for photovoltaics 2019 Chin. Phys. B 28 016105

[1] Zhang H J, Li Y F, Hou J H, Tu K X and Chen Z F 2016 J. Am. Chem. Soc. 138 5644
[2] Wirth-Lima A J, Silva M G and Sombra A S B 2018 Chin. Phys. B 27 023201
[3] Lei J H, Wang X F and Lin J G 2017 Chin. Phys. B 26 127101
[4] Li L k, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372
[5] Zhang Q, Zhang H and Cheng X L 2018 Chin. Phys. B 27 027301
[6] Wan W H, Liu C, Xiao W D and Yao Y G 2017 Appl. Phys. Lett. 111 132904
[7] Cocemasov A I, Isacova C I and Nika D L 2018 Chin. Phys. B 27 056301
[8] Chen S and Shi G Q 2017 Advanced Mater. 29 1605448
[9] Hong J H, Jin C H, Yuan J and Zhang Z 2017 Advanced Mater. 29 1606434
[10] Kong X K, Liu Q C, Zhang C L, Peng Z M and Chen Q W 2017 Chem. Soc. Rev. 46 2127
[11] Hu G, Huang J Q, Wang Y N, Yang T, Dong B J, Wang J Z, Zhao B, Ali S and Zhang Z D 2018 Chin. Phys. B 27 086301
[12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[13] Xia F N, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
[14] Cava R J, Phillips J M, Kwo J, Thomas G A, van Dover R B, Carter S A, Krajewski J J, Peck W F, Marshall J H and Rapkine D H 1994 Appl. Phys. Lett. 64 2071
[15] Patzke G and Binnewies M 2000 Solid State Sci. 2 689
[16] Minami T 2000 MRS Bull. 25 38
[17] Tomm Y, Reiche P, Klimm D and Fukuda T 2000 J. Cryst. Growth 220 510
[18] Banerjee A N and Chattopadhyay K K 2005 Prog. Cryst. Growth Characterization Mater. 50 52
[19] Peelaers H, Steiauf D, Varley J B, Janotti A and Van de Walle C G 2015 Phys. Rev. B 92 085206
[20] Li G L, Zhang F B, Cui Y T, Oji H, Son J Y and Guo Q X 2015 Appl. Phys. Lett. 107 022109
[21] Rusakov D A, Belik A A, Kamba S, Savinov M, Nuzhnyy D, Kolodiazhnyi T, Yamaura K, Takayama-Muromachi E, Borodavka F and Kroupa J 2011 Inorg. Chem. 50 3559
[22] Wang V, Xiao W, Ma D M, Liu R J and Yang C M 2014 J. Appl. Phys. 115 043708
[23] Shannon R D, Prewitt C T 1968 J. Inorg. Nucl. Chem. 30 1389
[24] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[27] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[28] Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y and Barsoum M W 2011 Advanced Mater. 23 4248
[29] Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y and Jena P 2015 Proc. Natl. Academy Sci. 112 2372
[30] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[31] Liu S J, Du H, Li G L, Li L B, Shi X Q and Liu B B 2018 Phys. Chem. Chem. Phys. 20 20615
[32] Liu S J, Liu B, Shi X H, Lv J Y, Niu S F, Yao M G, Li Q J, Liu R, Cui T and Liu B B 2017 Sci. Rep. 7 2404
[1] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[2] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[3] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[4] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[5] A novel two-dimensional SiO sheet with high-stability, strain tunable electronic structure, and excellent mechanical properties
Shijie Liu(刘世杰) and Hui Du(杜慧). Chin. Phys. B, 2021, 30(7): 076104.
[6] Effect of strain on electrochemical performance of Janus MoSSe monolayer anode material for Li-ion batteries: First-principles study
Guoqing Wang(王国庆), Wenjing Qin(秦文静), and Jing Shi(石晶). Chin. Phys. B, 2021, 30(4): 046301.
[7] Broadband absorption enhancement with ultrathin MoS2 film in the visible regime
Jun Wu(吴俊). Chin. Phys. B, 2021, 30(2): 024208.
[8] Lattice thermal conductivity of β12 and χ3 borophene
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰). Chin. Phys. B, 2020, 29(12): 126503.
[9] Electronic properties of size-dependent MoTe2/WTe2 heterostructure
Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起). Chin. Phys. B, 2019, 28(10): 107101.
[10] Thermal transport in semiconductor nanostructures, graphene, and related two-dimensional materials
Alexandr I. Cocemasov, Calina I. Isacova, Denis L. Nika. Chin. Phys. B, 2018, 27(5): 056301.
[11] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[12] Electronic, optical property and carrier mobility of graphene, black phosphorus, and molybdenum disulfide based on the first principles
Congcong Wang(王聪聪), Xuesheng Liu(刘学胜), Zhiyong Wang(王智勇), Ming Zhao(赵明), Huan He(何欢), Jiyue Zou(邹吉跃). Chin. Phys. B, 2018, 27(11): 118106.
[13] Electronic structure of silicene
L. C. Lew Yan Voon (刘祿昌). Chin. Phys. B, 2015, 24(8): 087309.
[14] Tunneling magnetoresistance based on a Cr/graphene/Cr magnetotunnel junction
Luan Gui-Ping (栾桂苹), Zhang Pei-Ran (张沛然), Jiao Na (焦娜), Sun Li-Zhong (孙立忠). Chin. Phys. B, 2015, 24(11): 117201.
[15] Effect of Gd doping on the magnetism and work function of Fe1-xGdx/Fe (001)
Tang Ke-Qin (汤可嵚), Zhong Ke-Hua (钟克华), Cheng Yan-Ming (程燕铭), Huang Zhi-Gao (黄志高). Chin. Phys. B, 2014, 23(5): 056301.
No Suggested Reading articles found!