Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094209    DOI: 10.1088/1674-1056/27/9/094209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-power linearly-polarized tunable Raman fiber laser

Jiaxin Song(宋家鑫), Hanshuo Wu(吴函烁), Jiangming Xu(许将明), Hanwei Zhang(张汉伟), Jun Ye(叶俊), Jian Wu(吴坚), Pu Zhou(周朴)
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
Abstract  

In this study, we demonstrate an all-fiber high-power linearly-polarized tunable Raman fiber laser system. An in-house high-power tunable fiber laser was employed as the pump source. A fiber loop mirror (FLM) serving as a high reflectivity mirror and a flat-cut endface serving as an output coupler were adopted to provide broadband feedback. A piece of 59-m commercial passive fiber was used as the Raman gain medium. The Raman laser had a 27.6 nm tuning range from 1112 nm to 1139.6 nm and a maximum output power of 125.3 W, which corresponds to a conversion efficiency of 79.4%. The polarization extinction ratio (PER) at all operational wavelengths was measured to be over 21 dB. To the best of our knowledge, this is the first report on a hundred-watt level linearly-polarized tunable Raman fiber laser.

Keywords:  Raman laser      linearly polarized      tunable      fiber laser  
Received:  05 April 2018      Revised:  29 May 2018      Published:  05 September 2018
PACS:  42.55.Ye (Raman lasers)  
  42.55.Wd (Fiber lasers)  
  42.25.Ja (Polarization)  
Fund: 

Project supported by the Fok Ying-Tong Education Foundation, China (Grant No. 151062).

Corresponding Authors:  Pu Zhou     E-mail:  zhoupu203@163.com

Cite this article: 

Jiaxin Song(宋家鑫), Hanshuo Wu(吴函烁), Jiangming Xu(许将明), Hanwei Zhang(张汉伟), Jun Ye(叶俊), Jian Wu(吴坚), Pu Zhou(周朴) High-power linearly-polarized tunable Raman fiber laser 2018 Chin. Phys. B 27 094209

[1] Jackson S D, Sabella A and Lancaster D G 2007 IEEE J. Sel. Top. Quant. 13 567
[2] Royon R, Lhermite J, Sarger L and Cormier E 2013 Opt. Express 21 13818
[3] Zhou P, Wang X, Xiao H, Ma Y and Chen J 2012 Laser Phys. 22 823
[4] Jin X, Du X, Wang X, Zhou P, Zhang H, Wang X and Liu Z 2016 Sci. Rep.-UK 6 30052
[5] Daniel J M O, Simakov N, Tokurakawa M, Ibsen M and Clarkson W A 2015 Opt. Express 23 18269
[6] Hu J, Zhang L and Feng Y 2015 IEEE Photonic. Tech. Lett. 27 2559
[7] Huang L, Zhang H W, Wang X L and Zhou P 2016 IEEE Photonics J. 8 1
[8] Chai H, Jia W, Han F, Men-Ke-Nei-Mu-Le, Yang J and Zhang J 2013 Acta Phys. Sin. 62 044215 (in Chinese)
[9] Supradeepa V R, Feng Y and Nicholson J W 2017 J. Optics-UK 19 23001
[10] Xu Y, Cui L, Li X, Guo C, Li Y, Xu Z, Wang L and Fang W 2016 Chin Phys. B 25 124205
[11] Jain R K, Lin C, Stolen R H, Pleibel W and Kaiser P 1977 Appl. Phys. Lett. 30 162
[12] Babin S A, Churkin D V, Kablukov S I, Rybakov M A and Vlasov A A 2007 Opt. Express 15 8438
[13] Belanger E, Bernier M, Faucher D, Cote D and Vallee R 2008 J. Lightwave Technol. 26 1696
[14] Zhang L, Jiang H, Yang X, Pan W, Cui S and Feng Y 2017 Sci. Rep.-UK 7 42611
[15] Zhang H, Xiao H, Zhou P, Wang X and Xu X 2013 IEEE Photonics J. 5 1501706
[16] Feng Y, Taylor L R and Calia D B 2009 Opt. Express 17 23678
[17] Zhang H, Zhou P, Wang X, Du X, Xiao H and Xu X 2015 Opt. Express 23 17138
[18] Supradeepa V R and Nicholson J W 2013 Opt. Lett. 38 2538
[19] Nicholson J W, Yan M F, Wisk P, Fleming J, Dimarcello F, Monberg E, Taunay T, Headley C and Digiovanni D J 2010 Opt. Lett. 35 3069
[20] Sinha S, Langrock C, Digonnet M J F, Fejer M M and Byer R L 2006 Opt. Lett. 31 347
[21] Surin A A, Borisenko T E and Larin S V 2016 Opt. Lett. 41 2644
[22] Zhou P, Huang L, Xu J, Ma P, Su R, Wu J and Liu Z 2017 Sci. China Technol. Sc. 60 1784
[23] Wang J, Zhang L, Zhou J, Si L, Chen J and Feng Y 2012 Chin. Opt. Lett. 10 021406
[24] Zlobina E A, Kablukov S I and Babin S A 2016 Opt. Express 24 25409
[25] Wu H Wang P, Song J, Ye J, Xu J, Li X and Zhou P 2018 Opt. Express 26 6446
[26] Fan T Y 2005 IEEE J. Sel. Top Quant. Electron. 11 567
[27] Liu Z J, Zhou P, Xu X, Wang X and Ma Y 2013 Sci. China Tech. Sci. 56 1597
[28] Afzal R S, Honea E, Savage-Leuchs M, Gitkind N, Humphreys R, Henrie J, Brar K and Jander D 2012 Proceedings of SPIE, November 8, 2012, San Francisco, California, p. 854706
[29] Honea Eric, Afzal R S, Savage-Leuchs M, Henrie J, Brar K, Kurz N, Jander D, Gitkind N, Hu D, Robin C, Jones A M, Kasinadhuni R and Humphreys R 2016 Proceedings Volume 9730, Components and Packaging for Laser Systems Ⅱ, April 22, 2016, San Francisco, California, p. 97300Y
[30] Zhang B, Jin A, Ma P, Chen S and Hou J 2015 Opt. Express 23 28683
[31] Zhu Z and Brown T G 2004 J. Opt. Soc. Am. B 21 249
[32] Agrawal G P 1995 Nonlinear Fiber Optics, 5th edn (Singapore:Elsevier) pp. 297-297
[33] Kurkov A S 2010 Laser Phys. Lett. 4 93
[34] Stolen R H 2004 Fundamentals of Raman Amplification in Fibers (New York:Springer) pp. 35-59
[35] Babin S A, Churkin D V and Ismagulov A E 2006 Opt. Lett. 31 3007
[36] Vatnik I D, Zlobina E A, Kablukov S I and Babin S A 2017 Opt. Express 25 2703
[1] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[2] Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser
Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎). Chin. Phys. B, 2021, 30(1): 014206.
[3] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[4] Visible-light all-fiber vortex lasers based on mode selective couplers
Chuchu Dong(董楚楚), Jinhai Zou(邹金海), Hongjian Wang(王鸿健), Han Yao(尧涵), Xianglong Zeng(曾祥龙), Yikun Bu(卜轶坤), Zhengqian Luo(罗正钱). Chin. Phys. B, 2020, 29(9): 094204.
[5] High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency
Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2020, 29(8): 084205.
[6] Polarization control and tuning efficiency of tunable vertical-cavity surface-emitting laser with internal-cavity sub-wavelength grating
Xiao-Long Wang(王小龙), Yong-Gang Zou(邹永刚), Zhi-Fang He(何志芳), Guo-Jun Liu(刘国军), Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2020, 29(8): 084208.
[7] 575-fs passively mode-locked Yb:CaF2 ceramic laser
Cong Wang(王聪), Qian-Qian Hao(郝倩倩), Wei-Wei Li(李威威), Hai-Jun Huang(黄海军), Shao-Zhao Wang(王绍钊), Da-Peng Jiang(姜大朋), Jie Liu(刘杰), Bing-Chu Mei(梅炳初), Liang-Bi Su(苏良碧). Chin. Phys. B, 2020, 29(7): 074205.
[8] Michelson laser interferometer-based vibration noise contribution measurement method for cold atom interferometry gravimeter
Ning Zhang(张宁), Qingqing Hu(胡青青), Qian Wang(王倩), Qingchen Ji(姬清晨), Weijing Zhao(赵伟靖), Rong Wei(魏荣), Yuzhu Wang(王育竹). Chin. Phys. B, 2020, 29(7): 070601.
[9] Compact NbN resonators with high kinetic inductance
Xing-Yu Wei(魏兴雨), Jia-Zheng Pan(潘佳政), Ya-Peng Lu(卢亚鹏), Jun-Liang Jiang(江俊良), Zi-Shuo Li(李子硕), Sheng Lu(卢盛), Xue-Cou Tu(涂学凑), Qing-Yuan Zhao(赵清源), Xiao-Qing Jia(贾小氢), Lin Kang(康琳), Jian Chen(陈健), Chun-Hai Cao(曹春海), Hua-Bing Wang(王华兵), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2020, 29(12): 128401.
[10] All-fiberized very-large-mode-area Yb-doped fiber based high-peak-power narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Min Yang(杨敏), Ping-Xue Li(李平雪), Dong-Sheng Wang(王东生), Ke-Xin Yu(于可新), Xue-Yan Dong(董雪岩), Ting-Ting Wang(王婷婷), Chuan-Fei Yao(姚传飞), and Wei-Xin Yang(杨卫鑫). Chin. Phys. B, 2020, 29(11): 114206.
[11] Noise-like rectangular pulses in a mode-locked double-clad Er:Yb laser with a record pulse energy
Tianyi Wu(吴田宜), Zhiyuan Dou(窦志远), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2020, 29(1): 014202.
[12] CsPbBr3 nanocrystal for mode-locking Tm-doped fiber laser
Yan Zhou(周延), Renli Zhang(张仁栗), Xia Li(李夏), Peiwen Kuan(关珮雯), Dongyu He(贺冬钰), Jingshan Hou(侯京山), Yufeng Liu(刘玉峰), Yongzheng Fang(房永征), Meisong Liao(廖梅松). Chin. Phys. B, 2019, 28(9): 094203.
[13] Diode-pumped Kerr-lens mode-locked Ti: sapphire laser with broad wavelength tunability
Han Liu(刘寒), Geyang Wang(王阁阳), Ke Yang(杨科), Renzhu Kang(康仁铸), Wenlong Tian(田文龙), Dacheng Zhang(张大成), Jiangfeng Zhu(朱江峰), Hainian Han(韩海年), Zhiyi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094213.
[14] Tunable coupling between Xmon qubit and coplanar waveguide resonator
He-Kang Li(李贺康), Ke-Min Li(李科敏), Hang Dong(董航), Qiu-Jiang Guo(郭秋江), Wu-Xin Liu(刘武新), Zhan Wang(王战), Hao-Hua Wang(王浩华), Dong-Ning Zheng(郑东宁). Chin. Phys. B, 2019, 28(8): 080305.
[15] Zinc-oxide nanoparticle-based saturable absorber deposited by simple evaporation technique for Q-switched fiber laser
Syarifah Aloyah Syed Husin, Farah Diana Muhammad, Che Azurahanim Che Abdullah, Siti Huzaimah Ribut, Mohd Zamani Zulkifli, Mohd Adzir Mahdi. Chin. Phys. B, 2019, 28(8): 084207.
No Suggested Reading articles found!