Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094209    DOI: 10.1088/1674-1056/27/9/094209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-power linearly-polarized tunable Raman fiber laser

Jiaxin Song(宋家鑫), Hanshuo Wu(吴函烁), Jiangming Xu(许将明), Hanwei Zhang(张汉伟), Jun Ye(叶俊), Jian Wu(吴坚), Pu Zhou(周朴)
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
Abstract  

In this study, we demonstrate an all-fiber high-power linearly-polarized tunable Raman fiber laser system. An in-house high-power tunable fiber laser was employed as the pump source. A fiber loop mirror (FLM) serving as a high reflectivity mirror and a flat-cut endface serving as an output coupler were adopted to provide broadband feedback. A piece of 59-m commercial passive fiber was used as the Raman gain medium. The Raman laser had a 27.6 nm tuning range from 1112 nm to 1139.6 nm and a maximum output power of 125.3 W, which corresponds to a conversion efficiency of 79.4%. The polarization extinction ratio (PER) at all operational wavelengths was measured to be over 21 dB. To the best of our knowledge, this is the first report on a hundred-watt level linearly-polarized tunable Raman fiber laser.

Keywords:  Raman laser      linearly polarized      tunable      fiber laser  
Received:  05 April 2018      Revised:  29 May 2018      Accepted manuscript online: 
PACS:  42.55.Ye (Raman lasers)  
  42.55.Wd (Fiber lasers)  
  42.25.Ja (Polarization)  
Fund: 

Project supported by the Fok Ying-Tong Education Foundation, China (Grant No. 151062).

Corresponding Authors:  Pu Zhou     E-mail:  zhoupu203@163.com

Cite this article: 

Jiaxin Song(宋家鑫), Hanshuo Wu(吴函烁), Jiangming Xu(许将明), Hanwei Zhang(张汉伟), Jun Ye(叶俊), Jian Wu(吴坚), Pu Zhou(周朴) High-power linearly-polarized tunable Raman fiber laser 2018 Chin. Phys. B 27 094209

[1] Jackson S D, Sabella A and Lancaster D G 2007 IEEE J. Sel. Top. Quant. 13 567
[2] Royon R, Lhermite J, Sarger L and Cormier E 2013 Opt. Express 21 13818
[3] Zhou P, Wang X, Xiao H, Ma Y and Chen J 2012 Laser Phys. 22 823
[4] Jin X, Du X, Wang X, Zhou P, Zhang H, Wang X and Liu Z 2016 Sci. Rep.-UK 6 30052
[5] Daniel J M O, Simakov N, Tokurakawa M, Ibsen M and Clarkson W A 2015 Opt. Express 23 18269
[6] Hu J, Zhang L and Feng Y 2015 IEEE Photonic. Tech. Lett. 27 2559
[7] Huang L, Zhang H W, Wang X L and Zhou P 2016 IEEE Photonics J. 8 1
[8] Chai H, Jia W, Han F, Men-Ke-Nei-Mu-Le, Yang J and Zhang J 2013 Acta Phys. Sin. 62 044215 (in Chinese)
[9] Supradeepa V R, Feng Y and Nicholson J W 2017 J. Optics-UK 19 23001
[10] Xu Y, Cui L, Li X, Guo C, Li Y, Xu Z, Wang L and Fang W 2016 Chin Phys. B 25 124205
[11] Jain R K, Lin C, Stolen R H, Pleibel W and Kaiser P 1977 Appl. Phys. Lett. 30 162
[12] Babin S A, Churkin D V, Kablukov S I, Rybakov M A and Vlasov A A 2007 Opt. Express 15 8438
[13] Belanger E, Bernier M, Faucher D, Cote D and Vallee R 2008 J. Lightwave Technol. 26 1696
[14] Zhang L, Jiang H, Yang X, Pan W, Cui S and Feng Y 2017 Sci. Rep.-UK 7 42611
[15] Zhang H, Xiao H, Zhou P, Wang X and Xu X 2013 IEEE Photonics J. 5 1501706
[16] Feng Y, Taylor L R and Calia D B 2009 Opt. Express 17 23678
[17] Zhang H, Zhou P, Wang X, Du X, Xiao H and Xu X 2015 Opt. Express 23 17138
[18] Supradeepa V R and Nicholson J W 2013 Opt. Lett. 38 2538
[19] Nicholson J W, Yan M F, Wisk P, Fleming J, Dimarcello F, Monberg E, Taunay T, Headley C and Digiovanni D J 2010 Opt. Lett. 35 3069
[20] Sinha S, Langrock C, Digonnet M J F, Fejer M M and Byer R L 2006 Opt. Lett. 31 347
[21] Surin A A, Borisenko T E and Larin S V 2016 Opt. Lett. 41 2644
[22] Zhou P, Huang L, Xu J, Ma P, Su R, Wu J and Liu Z 2017 Sci. China Technol. Sc. 60 1784
[23] Wang J, Zhang L, Zhou J, Si L, Chen J and Feng Y 2012 Chin. Opt. Lett. 10 021406
[24] Zlobina E A, Kablukov S I and Babin S A 2016 Opt. Express 24 25409
[25] Wu H Wang P, Song J, Ye J, Xu J, Li X and Zhou P 2018 Opt. Express 26 6446
[26] Fan T Y 2005 IEEE J. Sel. Top Quant. Electron. 11 567
[27] Liu Z J, Zhou P, Xu X, Wang X and Ma Y 2013 Sci. China Tech. Sci. 56 1597
[28] Afzal R S, Honea E, Savage-Leuchs M, Gitkind N, Humphreys R, Henrie J, Brar K and Jander D 2012 Proceedings of SPIE, November 8, 2012, San Francisco, California, p. 854706
[29] Honea Eric, Afzal R S, Savage-Leuchs M, Henrie J, Brar K, Kurz N, Jander D, Gitkind N, Hu D, Robin C, Jones A M, Kasinadhuni R and Humphreys R 2016 Proceedings Volume 9730, Components and Packaging for Laser Systems Ⅱ, April 22, 2016, San Francisco, California, p. 97300Y
[30] Zhang B, Jin A, Ma P, Chen S and Hou J 2015 Opt. Express 23 28683
[31] Zhu Z and Brown T G 2004 J. Opt. Soc. Am. B 21 249
[32] Agrawal G P 1995 Nonlinear Fiber Optics, 5th edn (Singapore:Elsevier) pp. 297-297
[33] Kurkov A S 2010 Laser Phys. Lett. 4 93
[34] Stolen R H 2004 Fundamentals of Raman Amplification in Fibers (New York:Springer) pp. 35-59
[35] Babin S A, Churkin D V and Ismagulov A E 2006 Opt. Lett. 31 3007
[36] Vatnik I D, Zlobina E A, Kablukov S I and Babin S A 2017 Opt. Express 25 2703
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[4] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[5] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[6] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[7] Temperature-responded tunable metalenses based on phase transition materials
Jing-Jun Wu(伍景军), Feng Tang(唐烽), Jun Ma(马骏), Bing Han(韩冰), Cong Wei(魏聪), Qing-Zhi Li(李青芝), Jun Chen(陈骏), Ning Zhang(张宁), Xin Ye(叶鑫), Wan-Guo Zheng(郑万国), and Ri-Hong Zhu(朱日宏). Chin. Phys. B, 2022, 31(5): 054216.
[8] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[9] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[10] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[11] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[12] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[13] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[14] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[15] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
No Suggested Reading articles found!