Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094208    DOI: 10.1088/1674-1056/27/9/094208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Thermal analysis of GaN-based laser diode mini-array

Jun-Jie Hu(胡俊杰)1,2, Shu-Ming Zhang(张书明)1, De-Yao Li(李德尧)1, Feng Zhang(张峰)1, Mei-Xin Feng(冯美鑫)1, Peng-Yan Wen(温鹏雁)1, Jian-Pin Liu(刘建平)1, Li-Qun Zhang(张立群)1, Hui Yang(杨辉)1
1 Key Laboratory of Nano-Devices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Thermal characteristics of multiple laser stripes integrated into one chip is investigated theoretically in this paper. The temperature pattern of the laser diode mini-array packaged in a TO-can is analyzed and optimized to achieve a uniform temperature distribution among the laser stripes and along the cavity direction. The temperature among the laser stripes varies by more than 5 K if the stripes are equally arranged, and can be reduced to less than 0.4 K if proper arrangement is designed. For conventional submount structure, the temperature variation along the cavity direction is as high as 7 K, while for an optimized trapezoid submount structure, the temperature varies only within 0.5 K.

Keywords:  GaN laser diode      laser diode array      thermal analysis      temperature distribution  
Received:  03 April 2018      Revised:  10 May 2018      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0402002, 2016YFB0401803, 2017YFB0405002, 2017YFB0405003, and 2017YFB0405005), the National Natural Science Foundation of China (Grant Nos. 61574160, 61704184, and 61334005), the Strategic Priority Research Program of the Chinese Academy of Science (Grant No. XDA09020401), the Chinese Academy of Science Visiting Professorship for Senior International Scientists (Grant No. 2013T2J0048), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170430), and the CPSF-CAS Joint Foundation for Excellent Postdoctoral Fellows, China (Grant No. 2016LH0026).

Corresponding Authors:  Shu-Ming Zhang     E-mail:  smzhang2010@sinano.ac.cn

Cite this article: 

Jun-Jie Hu(胡俊杰), Shu-Ming Zhang(张书明), De-Yao Li(李德尧), Feng Zhang(张峰), Mei-Xin Feng(冯美鑫), Peng-Yan Wen(温鹏雁), Jian-Pin Liu(刘建平), Li-Qun Zhang(张立群), Hui Yang(杨辉) Thermal analysis of GaN-based laser diode mini-array 2018 Chin. Phys. B 27 094208

[1] Hwang W J, Lee T H, Nam O H, Kim H K, Kwak J S, Park Y J and Shin M W 2006 Phys. Status Solidi C 3 2174
[2] Ji L, Jiang D S, Zhang S M, Liu Z S, Zheng C, Zhao D G, Zhu J J, Wang H, Duan L H and Yang H 2010 Chin. Phys. B 19 124211
[3] Gmachl C F, Asano T, Bour D P, Takeya M, Mizuno T, Ikeda S, Ohfuji Y, Fujimoto T, Oikawa K, Goto S, Hashizu T, Aga K and Ikeda M 2004 Proc. SPIE 5365 297
[4] Goto S, Ohta M, Yabuki Y, Hoshina Y, Naganuma K, Tamamura K, Hashizu T and Ikeda M 2003 Phys. Status Solidi A 200 122
[5] Perlin P, Marona L, Holc K, Wisniewski P, Suski T, Leszczynski M, Czernecki R, Najda S, Zajac M and Kucharski R 2011 Appl. Phys. Express 4 062103
[6] Ji L, Zhang S M, Jiang D S, Li Z S, Zhang L Q, Zhu J J, Zhao D G, Duan L H and Yang H 2010 Chin. Phys. Lett. 27 054204
[7] Chen P, Zhao D G, Feng M X, Jiang D S, Liu Z S, Zhang L Q, Li D Y, Liu J P, Wang H, Zhu J J, Zhang S M, Zhang B S and Yang H 2013 Chin. Phys. Lett. 30 104205
[8] Zhang Z Y, Zhang P, Nie Z Q, Li X N, Xiong L L, Liu H, Wang Z F and Liu X S 2013 High Power Laser Part. Beams 25 1904
[9] Belyanin A A, Samonji K, Smowton P M, Yoshida S, Hagino H, Yamanaka K and Takigawa S 2012 Proc. SPIE 8277 82771K
[10] Shi D, Feng S, Qiao Y and Wen P Y 2015 SolidState Electron. 109 25
[11] Perlin P, Świetlik T, Marona L, Czernecki R, Suski T, Leszczyński M, Grzegory I, Krukowski S, Nowak G, Kamler G, Czerwinski A, Plusa M, Bednarek M, Rybiński J and Porowski S 2008 J. Cryst. Growth 310 3979
[12] Ryu H Y, Ha K H, Chae J H, Nam O H and Park Y J 2005 Appl. Phys. Lett. 87 093506
[13] Zhu C, Zhang Y G, Li A Z and Tian Z B 2006 J. Appl. Phys. 100 053105
[14] Hatakoshi G, Onomura M, Yamamoto M, Nunoue S Y, Itaya K and Ishikawa M 1999 Jpn. J. Appl. Phys. 38 2764
[15] Feng M X, Zhang S M, Jiang D S, Liu J P, Wang H, Zeng C, Li Z C, Wang H B, Wang F and Yang H 2012 Chin. Phys. B 21 084209
[1] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[2] Flow characteristics of supersonic gas passing through a circular micro-channel under different inflow conditions
Guang-Ming Guo(郭广明), Qin Luo(罗琴), Lin Zhu(朱林), Yi-Xiang Bian(边义祥). Chin. Phys. B, 2019, 28(6): 064702.
[3] Electrical and thermal characterization of near-surface electrical discharge plasma actuation driven by radio frequency voltage at low pressure
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2018, 27(8): 085205.
[4] Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera
Guannan Liu(刘冠楠), Dong Liu(刘冬). Chin. Phys. B, 2018, 27(5): 054401.
[5] Efficient thermal analysis method for large scale compound semiconductor integrated circuits based on heterojunction bipolar transistor
Shi-Zheng Yang(杨施政), Hong-Liang Lv(吕红亮), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门), Bin Lu(芦宾), Si-Lu Yan(严思璐). Chin. Phys. B, 2018, 27(10): 108101.
[6] Role of entropy generation minimization in thermal optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2017, 26(12): 120505.
[7] Simulation on effect of metal/graphene hybrid transparent electrode on characteristics of GaN light emitting diodes
Ming-Can Qian(钱明灿), Shu-Fang Zhang(张淑芳), Hai-Jun Luo(罗海军), Xing-Ming Long(龙兴明), Fang Wu(吴芳), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Fan-Ming Meng(孟凡明), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2017, 26(10): 104402.
[8] Two-dimensional thermal illusion device with arbitrary shape based on complementary media
Ge Xia(夏舸), Wei Kou(寇蔚), Li Yang(杨立), Yong-Cheng Du(杜永成). Chin. Phys. B, 2017, 26(10): 104403.
[9] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
[10] Near-zero thermal expansion of In2(1-x)(HfMg)xMo3O12 with tailored phase transition
Yong-Guang Cheng(程永光), Yan-Chao Mao(毛彦超), Xain-Sheng Liu(刘献省), Bao-He Yuan(袁保合), Ming-Ju Chao(晁明举), Er-Jun Liang(梁二军). Chin. Phys. B, 2016, 25(8): 086501.
[11] Transient thermal analysis as measurement method for IC package structural integrity
Alexander Hanß, Maximilian Schmid, E Liu, Gordon Elger. Chin. Phys. B, 2015, 24(6): 068105.
[12] An RLC interconnect analyzable crosstalk model considering self-heating effect
Zhu Zhang-Ming(朱樟明) and Liu Shu-Bin(刘术彬) . Chin. Phys. B, 2012, 21(2): 028401.
[13] Determination of temperature distribution and control parameter in a two-dimensional parabolic inverse problem with overspecified data
Li Fu-Le(李福乐) and Zhang Hong-Qian(张洪谦) . Chin. Phys. B, 2011, 20(10): 100201.
[14] GaN-based violet laser diodes grown on free-standing GaN substrate
Zhang Li-Qun(张立群),Zhang Shu-Ming(张书明),Jiang De-Sheng(江德生), Wang Hui(王辉),Zhu Jian-Jun(朱建军),Zhao De-Gang(赵德刚), Liu Zong-Shun(刘宗顺), and Yang Hui(杨辉) . Chin. Phys. B, 2009, 18(12): 5350-5353.
[15] A novel analytical thermal model for multilevel nano-scale interconnects considering the via effect
Zhu Zhang-Ming(朱樟明),Li Ru(李儒), Hao Bao-Tian(郝报田), and Yang Yin-Tang(杨银堂) . Chin. Phys. B, 2009, 18(11): 4995-5000.
No Suggested Reading articles found!