Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067202    DOI: 10.1088/1674-1056/27/6/067202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

How to characterize capacitance of organic optoelectronic devices accurately

Hao-Miao Yu(于浩淼)1, Yun He(何鋆)2
1 Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China;
2 National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology(Xi'an), Xi'an 710100, China
Abstract  The selection of circuit model (i.e., parallel or series model) is critical when using a capacitance-frequency and capacitance-voltage technique to probe properties of organic materials and physical processes of organic optoelectronic devices. In the present work, capacitances of ITO/Alq3/Al and ITO/CuPc/Al are characterized by series and parallel model, respectively. It is found that the large series resistance comes from the ITO electrode and results in the inapplicability of the parallel model to measuring the capacitances of organic devices at high frequencies. An equivalent circuit model with consideration of the parasitical inductance of cables is constructed to derive the capacitance, and actual capacitance-frequency spectra of Alq3 and CuPc devices are obtained. Further investigation of temperature-dependent capacitance-frequency and capacitance-voltage characteristics indicates that CuPc and Al form the Schottky contact, the density and ionization energy of impurities in CuPc are obtained. Moreover, more practical guidelines for accurate capacitance measurement are introduced instead of the impedance magnitude, which will be very helpful for the organic community to investigate capacitance-related characteristics when dealing with various organic optoelectronic devices.
Keywords:  organic semiconductor      capacitance characterization      Schottky contact      ionization energy  
Received:  26 December 2017      Revised:  12 March 2018      Published:  05 June 2018
PACS:  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  73.61.Ph (Polymers; organic compounds)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities,China
Corresponding Authors:  Hao-Miao Yu, Yun He     E-mail:  yuhaomiao@bjtu.edu.cn;081019028@fudan.edu.cn

Cite this article: 

Hao-Miao Yu(于浩淼), Yun He(何鋆) How to characterize capacitance of organic optoelectronic devices accurately 2018 Chin. Phys. B 27 067202

[1] Tomozawa H, Braun D, Phillips S, Heeger A J and Kroemer H 1987 Synth. Met. 22 63
[2] Sharma G D, Saxena Dhiraj and Roy M S 2001 Synth. Met. 123 189
[3] Dennler G, Lungenschmied C, Sariciftci N S, Schwödiauer R, Bauer S and Reiss H 2005 Appl. Phys. Lett. 87 163501
[4] Guvenc Ali Bilge, Yengel Emre, Wang Guoping, Ozkan Cengiz S and Ozkan Mihrimah 2010 Appl. Phys. Lett. 96 143301
[5] Sharma A, Kumar P, Singh B, Chaudhuri S R and Ghosh S 2011 Appl. Phys. Lett. 99 023301
[6] Boix Pablo P, Garcia-Belmonte Germá, Muñecas Udane, Neophytou Marios, Waldauf Christoph and Pacios Roberto 2009 Appl. Phys. Lett. 95 233302
[7] Reis F T, Mencaraglia D, Saad S Oould, Séguy I, Oukachmih M, Jolinat P and Destruel P 2003 Synth. Met. 138 33
[8] Li Jian V, Nardes Alexandre M, Liang Ziqi, Shaheen Sean E, Gregg Brian A and Levi Dean H 2011 Org. Electron. 12 1879
[9] Gommans H H P, Kemerink M, Andersson G G and Pijper R M T 2004 Phys. Rev. B 69 155216
[10] Tsang S W, So S K and Xu J B 2006 J. Appl. Phys. 99 013706
[11] Carr J A and Chaudhary S 2012 Appl. Phys. Lett. 100 213902
[12] Vestweber H and Riess W 1997 Synth. Met. 91 181
[13] Liu Z T, Lo M F, Wang H B, Ng T W, Roy V A L, Lee C S and Lee S T 2009 Appl. Phys. Lett. 95 093307
[14] Ai Yuming, Gowrisanker Srinivas, Jia Huiping, Trachtenberg Isaac, Vogel Eric, Wallace Robert M, Gnade Bruce E, Barnett Raymond, Stiegler Harvey and Edwards Hal 2007 Appl. Phys. Lett. 90 262105
[15] Song Q L, Li C M, Chan-Park Mary B, Lu M, Yang H and Hou X Y 2007 Phys. Rev. Lett. 98 176403
[16] He Y, Hu Y M, Chen X Q, Peng H, You Y T, Zeng Q, Gao X D and Hou X Y 2013 J. Phys. Chem. C 117 9143
[17] Agilent Technologies 2009 Agilent Impedance Measurement Handbook, 4th edn.
[18] Vincent G, Bois D and Pinard P 1975 J. Appl. Phys. 46 5173
[19] Koide Y, Koizumi S, Kanda H, Suzuki M, Yoshida H, Sakuma N, Ono T and Sakai T 2005 Appl. Phys. Lett. 86 232105
[20] Los A V and Mazzola M S 2001 J. Appl. Phys. 89 3999
[21] Los A V and Mazzola M S 2001 J. Electron. Mater. 30 235
[22] Sze S M and Ng Kwok K 2006 Physics of Semiconductor Devices, 3rd edn. (John Wiley & Sons)
[23] Mahapatro Ajit Kumar and Ghosh Subhasis 2002 Appl. Phys. Lett. 80 4840
[24] Kwong C Y, Djurišiĉ A B, Chui P C, Lam L S M and Chan W K 2003 Appl. Phys. A-Mater. Sci. Process. 77 555
[1] Influences of increasing gate stem height on DC and RF performances of InAlAs/InGaAs InP-based HEMTs
Zhi-Hang Tong(童志航), Peng Ding(丁芃), Yong-Bo Su(苏永波), Da-Hai Wang(王大海), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(1): 018501.
[2] Thin-film growth behavior of non-planar vanadium oxide phthalocyanine
Tian-Jiao Liu(刘天娇), Hua-Yan Xia(夏华艳), Biao Liu(刘标), Tim S Jones, Mei Fang(方梅), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2019, 28(8): 088101.
[3] Polarized red, green, and blue light emitting diodes fabricated with identical device configuration using rubbed PEDOT:PSS as alignment layer
Haoran Zhang(张皓然), Qi Zhang(张琪), Qian Zhang(张茜), Huizhi Sun(孙汇智), Gang Hai(海港), Jing Tong(仝静), Haowen Xu(徐浩文), Ruidong Xia(夏瑞东). Chin. Phys. B, 2019, 28(7): 078108.
[4] Explicitly correlated configuration interaction investigation on low-lying states of SiO+ and SiO
Rui Li(李瑞), Gui-Ying Liang(梁桂颖), Xiao-He Lin(林晓贺), Yu-Hao Zhu(朱宇豪), Shu-Tao Zhao(赵书涛), Yong Wu(吴勇). Chin. Phys. B, 2019, 28(4): 043102.
[5] Photodetectors based on small-molecule organic semiconductor crystals
Jing Pan(潘京), Wei Deng(邓巍), Xiuzhen Xu(徐秀真), Tianhao Jiang(姜天昊), Xiujuan Zhang(张秀娟), Jiansheng Jie(揭建胜). Chin. Phys. B, 2019, 28(3): 038102.
[6] Analysis of the inhomogeneous barrier and phase composition of W/4H-SiC Schottky contacts formed at different annealing temperatures
Sheng-Xu Dong(董升旭), Yun Bai(白云), Yi-Dan Tang(汤益丹), Hong Chen(陈宏), Xiao-Li Tian(田晓丽), Cheng-Yue Yang(杨成樾), Xin-Yu Liu(刘新宇). Chin. Phys. B, 2018, 27(9): 097305.
[7] On the reverse leakage current of Schottky contacts on free-standing GaN at high reverse biases
Yong Lei(雷勇), Jing Su(苏静), Hong-Yan Wu(吴红艳), Cui-Hong Yang(杨翠红), Wei-Feng Rao(饶伟锋). Chin. Phys. B, 2017, 26(2): 027105.
[8] Study of a ternary blend system for bulk heterojunction thin film solar cells
Zubair Ahmad, Farid Touati, Shakoor R A, Al-Thani N J. Chin. Phys. B, 2016, 25(8): 080701.
[9] Alternating current characterization of nano-Pt(II) octaethylporphyrin (PtOEP) thin film as a new organic semiconductor
M Dongol, M M El-Nahass, A El-Denglawey, A A Abuelwafa, T Soga. Chin. Phys. B, 2016, 25(6): 067201.
[10] Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy
Wei Dang(党伟), Qing Liao(廖清), Peng-Cheng Mao(毛鹏程), Hong-Bing Fu(付红兵), Yu-Xiang Weng(翁羽翔). Chin. Phys. B, 2016, 25(5): 054207.
[11] Effect of traps’adjacency on the electric field dependence of mobility in organic systems
He Yun, Chen Xiao-Qing, Hou Xiao-Yuan. Chin. Phys. B, 2014, 23(9): 097201.
[12] Schottky forward current transport mechanisms in AlGaN/GaN HEMTs over a wide temperature range
Wu Mei, Zheng Da-Yong, Wang Yuan, Chen Wei-Wei, Zhang Kai, Ma Xiao-Hua, Zhang Jin-Cheng, Hao Yue. Chin. Phys. B, 2014, 23(9): 097307.
[13] Annealing temperature influence on the degree of inhomogeneity of the Schottky barrier in Ti/4H–SiC contacts
Han Lin-Chao, Shen Hua-Jun, Liu Ke-An, Wang Yi-Yu, Tang Yi-Dan, Bai Yun, Xu Heng-Yu, Wu Yu-Dong, Liu Xin-Yu. Chin. Phys. B, 2014, 23(12): 127302.
[14] Theoretical study of γ-aminobutyric acid conformers: Intramolecular interactions and ionization energies
Wang Ke-Dong, Wang Mei-Ting, Meng Ju. Chin. Phys. B, 2014, 23(10): 103101.
[15] Ionization energies and term energies of the ground states 1s22s of lithium-like systems
Li Jin-Ying, Wang Zhi-Wen. Chin. Phys. B, 2014, 23(1): 013201.
No Suggested Reading articles found!