Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 117806    DOI: 10.1088/1674-1056/27/11/117806
Special Issue: SPECIAL TOPIC — 80th Anniversary of Northwestern Polytechnical University (NPU)
SPECIAL TOPIC—80th Anniversary of Northwestern Polytechnical University (NPU) Prev   Next  

Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite

Zi-Rui Jia(贾梓睿)1,2, Zhen-Guo Gao(高振国)1,3, Di Lan(兰笛)1, Yong-Hong Cheng(成永红)2, Guang-Lei Wu(吴广磊)2,3, Hong-Jing Wu(吴宏景)1
1 School of Science, Northwestern Polytechnical University, Xi'an 710072, China;
2 Center of Nanomaterials for Renewable Energy(CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
3 Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China

Epoxy-based composites containing montmorillonite (MMT) modified by silylation reaction with γ-aminopropyltriethoxysilane (γ-APTES) and 3-(glycidyloxypropyl) trimethoxysilane (GPTMS) are successfully prepared. The effects of filler loading and surface modification on the electrical and thermal properties of the epoxy/MMT composites are investigated. Compared with the pure epoxy resin, the epoxy/MMT composite, whether MMT is surface-treated or not, shows low dielectric permittivity, low dielectric loss, and enhanced dielectric strength. The MMT in the epoxy/MMT composite also influences the thermal properties of the composite by improving the thermal conductivity and stability. Surface functionalization of MMT not only conduces to the better dispersion of the nanoparticles, but also significantly affects the electric and thermal properties of the hybrid by influencing the interfaces between MMT and epoxy resin. Improved interfaces are good for enhancing the electric and thermal properties of nanocomposites. What is more, the MMT modified with GPTMS rather than γ-APTES is found to have greater influence on improving the interface between the MMT filler and polymer matrices, thus resulting in lower dielectric loss, lower electric conductivity, higher breakdown strength, lower thermal conductivity, and higher thermal stability.

Keywords:  modified epoxy resin      surface modification      electric property      thermal property  
Received:  04 July 2018      Revised:  28 August 2018      Accepted manuscript online: 
PACS:  78.67.Sc (Nanoaggregates; nanocomposites)  
  81.65.-b (Surface treatments)  
  77.22.Jp (Dielectric breakdown and space-charge effects)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 21806129, 51872238, 51407134, and 51521065), the China Postdoctoral Science Foundation (Grant No. 2016M590619), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2016EEQ28), the State Key Laboratory of Electrical Insulation and Power Equipment, China (Grant No. EIPE14107), the Fundamental Research Funds for the Central Universities, China (Grant No. 3102018zy045), and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2017JQ5116).

Corresponding Authors:  Yong-Hong Cheng, Hong-Jing Wu     E-mail:;

Cite this article: 

Zi-Rui Jia(贾梓睿), Zhen-Guo Gao(高振国), Di Lan(兰笛), Yong-Hong Cheng(成永红), Guang-Lei Wu(吴广磊), Hong-Jing Wu(吴宏景) Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite 2018 Chin. Phys. B 27 117806

[1] Marconnet A M, Yamamoto N, Panzer M A, Wardle L B and Goodson E K 2011 ACS Nano 5 4818
[2] Gulotty R, Castellino M, Jagdale P, Tagliaferro A and Balandin A A 2013 ACS Nano 7 5114
[3] Qu S H, Yu Y K, Lin K J, Liu P Y, Zheng C H, Wang L D, Xu T T, Wang Z D and Wu H J 2018 J. Mater. Sci. Mater. Electron. 29 1232
[4] Jia Z R, Lin K J, Wu G L, Xing H and Wu H J 2018 Nano 13 1830005
[5] Feng A L, Wu G L, Pan C and Wang Y Q 2017 J. Nanosci. Nanotechnol. 17 3859
[6] Kim P, Jones S C, Hotchkiss P J, Kippelen B, Marder S R and Perry J W 2007 Adv. Mater. 19 1001
[7] Wu G L, Cheng Y H, Wang K K, Wang Y Q and Feng A L 2016 J. Mater. Sci.:Mater. Electron. 27 5592
[8] Yosefi N, Sun X Y, Lin X Y, Shen X, Jia J J, Zhang B, Tang B Z, Chan M S and Kim J K 2014 Adv. Mater. 26 5480
[9] Huang X Y and Jiang P K 2015 Adv. Mater. 27 546
[10] Wan L, Zhang X, Wu G L and Feng A L 2017 High Volt. 2 167
[11] Feng Y, Li W L, Hou Y F, Yu Y, Cao W P, Zhang T D and Fei W D 2015 J. Mater. Chem. C 3 1250
[12] Zhang C, Li A, Zhao Y H, Bai S L and Zhang Y F 2018 Compos. Part. B Eng. 135 201
[13] Feng A L, Jia Z R, Yu Q, Zhang H X and Wu G L 2018 Nano 13 1850037
[14] Xie Q, Cheng Y H, Chen S Y, Wu G L, Wang Z D and Jia Z R 2017 J. Mater. Sci.:Mater. Electron. 28 17871
[15] Li Y Y, Tian M Q, Lei Z P and Zhang J H 2018 J. Phys. D:Appl. Phys. 51 125309
[16] Wu G L, Li J L, Wang K K, Wang Y Q, Pan C and Feng A L 2017 J. Mater. Sci.:Mater. Electron. 28 6544
[17] Ianchis R, Rosca I D, Ghiurea M, Spataru C I, Nicolae C A, Gabor R, Raditoiu V, Preda S, Fierascu R C and Donescu D 2015 Appl. Clay Sci. 103 28
[18] Tanaka T, Ohki Y, Ochi M, Harada M and Imai T 2007 IEEE Trans. Dielectr. Electr. Insul. 15 81
[19] Yang K, Huang X Y, Fang L J, He J L and Jiang P K 2014 Nanoscale 6 14740
[20] Pan C, Zhang J Q, Kou K C, Zhang Y and Wu G L 2018 Int. J. Heat Mass Transfer 120 1
[21] Azeez A A, Rhee K Y, Park S J and Hui D 2013 Compos. Part. B Eng. 45 308
[22] Thelakkadan A S, Coletti G, Guastavino F and Fina A 2011 Polym. Compos. 32 1499
[23] Huang Y, Min D M, Li S T, Wang X and Lin S J 2017 IEEE Trans. Dielectr. Electr. Insul. 24 3083
[24] Lin J J, Chan Y N and Lan Y F 2010 Materials 3 2588
[25] Osman M A, Rupp J E P and Suter U W 2005 Polymer 46 1653
[26] Piscitelli F, Scamardella A M, Romeo V, Lavorgna M, Barra G and Amendola E 2012 J. Appl. Polym. Sci. 124 616
[27] Choi Y Y, Lee S H and Ryu S H 2009 Polym. Bull. 63 47
[28] Zhou W Y 2011 J. Mater. Sci. 46 3883
[29] Chu P F, Zhang H, Zhao J, Gao F, Guo Y F, Dang B and Zhang Z 2017 Compos. Part. A-Appl. S. 99 139
[30] Gao M Z and Zhang P H 2016 Acta Phys. Sin. 65 247802(in Chinese)
[31] Essabir H, Boujmal R, Bensalah M O, Rodrigue D, Bouhfid R and Qaiss A E K 2016 Mech. Mater. 98 36
[32] Su L N, Tao Q, He H P, Zhu J X, Yuan P and Zhu R L 2013 J. Colloid Interface Sci. 391 16
[33] Tuncer E, Sauers I, James D R, Ellis A R, Paranthaman M P, Aytuǧ T, Sathyamurthy S, More K L, Li J and Goyal A 2007 Nanotechnology 18 025703
[34] Kripotou S, Pissis P, Savelyev Y V, Robota L P and Travinskaya T V 2010 J. Macromol. Sci. Part. B 49 86
[35] Singha S and Thomas M J 2009 IEEE Trans. Dielectr. Electr. Insul. 16 531
[36] Fothergill J C, Nelson J K and Fu M 2004 Conference on Electrical Insulation & Dielectric Phenomena, October 17-202004, Boulder, USA, p. 406
[37] Singha S and Thomas M J 2008 IEEE Trans. Dielectr. Electr. Insul. 15 12
[38] Morales A G and Taylor A C 2014 J. Mater. Sci. 49 1574
[39] Renukappa R N M, Chikkakuntappa R and Kunigal N S 2011 Polym. Eng. Sci. 51 1827
[40] Wu H J, Qu S H, Lin K J, Qing Y C, Wang L D, Fan Y C, Fu Q H and Zhang F L 2018 Powder Technol. 333 153
[41] Yu Y K, Qu S H, Zang D Y, Wang L D and Wu H J 2018 Nanoscale Res. Lett. 13 50
[42] Wu H J, Wu G L, Ren Y Y, Yang L, Wang L D and Li X H 2015 J. Mater. Chem. C 3 7677
[43] Wu H, Wang L, Wu H J and Lian Q 2014 Appl. Phys. A 115 1299
[44] Guo S L, Wang L D, Wang Y, Wu H J and Shen Z Y 2013 Chin. Phys. B 22 044101
[45] Wu H J, Wang L D, Guo S L and Shen Z Y 2012 Appl. Phys. A 108 439
[46] Mohamed A T 2015 Adv. Electr. Electron. Eng. 13 182
[47] Mohamed A T 2015 Int. J. Electr. Power Energy Syst. 64 469
[48] Dou X Y, Zhou Q, Chen X H, Tan Y Q, He X, Lu P, Sui K Y, Tang B Z, Zhang Y M and Yuan W Z 2018 Biomacromolecules 19 2014
[49] Wu G L, Cheng Y H, Wang Z D, Wang K K and Feng A L 2017 J. Mater. Sci.:Mater. Electron. 28 576
[50] Nelson J K and Fothergill J C 2004 Nanotechnology 15 586
[51] Li S T, Zhong L S, Li J Y and Chen G 2010 IEEE Electr. Insul. Mag. 26 14
[52] Wu G L, Wang Y Q, Wang K K and Feng A L 2016 RSC Adv. 6 102542
[53] Huang X Y, Iizuka T, Jiang P K, Ohki Y and Tanaka T 2012 J. Phys. Chem. C 116 13629
[54] Helal E, David E, Fréchette M and Demarquette N R 2017 Eur. Polym. J. 94 68
[55] Fang J F, Shi L Y, Zhang D S, Zhong Q D and Chen Y 2010 Polym. Eng. Sci. 50 1809
[56] Ray S S and Okamoto M 2003 Prog. Ploym. Sci. 28 1539
[57] Park S J, Seo D I and Lee J R 2002 J. Colloid Interf. Sci. 251 160
[1] Developing cold-resistant high-adhesive electronic substrate for WIMPs detectors at CDEX
Yuanyuan Liu(刘圆圆), Jianping Cheng(程建平), Pan Pang(庞盼), Bin Liao(廖斌), Bin Wu(吴彬), Minju Ying(英敏菊), Fengshou Zhang(张丰收), Lin Chen(陈琳), Shasha Lv(吕沙沙), Yandong Liu(刘言东), Tianxi Sun(孙天希). Chin. Phys. B, 2020, 29(4): 045203.
[2] Optical-induced dielectric tunability properties of DAST crystal in THz range
De-Gang Xu(徐德刚), Xian-Li Zhu(朱先立), Yu-Ye Wang(王与烨), Ji-Ning Li(李吉宁), Yi-Xin He(贺奕俽), Zi-Bo Pang(庞子博), Hong-Juan Cheng(程红娟), Jian-Quan Yao(姚建铨). Chin. Phys. B, 2019, 28(12): 127701.
[3] Thermal properties of a two-dimensional intrinsically curved semiflexible biopolymer
Zicong Zhou(周子聪), Yanting Wang(王延颋). Chin. Phys. B, 2017, 26(3): 038701.
[4] Dielectric and piezoelectric properties of (110) oriented Pb(Zr1-xTix)O3 thin films
Jian-Hua Qiu(邱建华), Zhi-Hui Chen(陈智慧), Xiu-Qin Wang(王秀琴), Ning-Yi Yuan(袁宁一), Jian-Ning Ding(丁建宁). Chin. Phys. B, 2016, 25(5): 057701.
[5] Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays
Ren-Wu Zhou(周仁武), Ru-Sen Zhou(周儒森), Jin-Xing Zhuang(庄金星), Jiang-Wei Li(李江炜), Mao-Dong Chen(陈茂冬), Xian-Hui Zhang(张先徽), Dong-Ping Liu(刘东平), Kostya (Ken) Ostrikov, Si-Ze Yang(杨思泽). Chin. Phys. B, 2016, 25(4): 045202.
[6] Microwave dielectric properties of Nextel-440 fiber fabrics with pyrolytic carbon coatings in the temperature range from room temperature to 700 ℃
Song Hui-Hui, Zhou Wan-Cheng, Luo Fa, Qing Yu-Chang, Chen Ma-Lin. Chin. Phys. B, 2015, 24(8): 088107.
[7] Piezoelectric and electro—optic properties of tetragonal (1-x)Pb(Mg1/3Nb2/3)O3xPbTiO3 single crystals by phenomenological theory
Qiu Jian-Hua, Wang Xiu-Qin, Yuan Ning-Yi, Ding Jian-Ning. Chin. Phys. B, 2015, 24(7): 077701.
[8] Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles
Rajwali Khan, Fang Ming-Hu. Chin. Phys. B, 2015, 24(12): 127803.
[9] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin, Yu Jing, Hou Yang-Long. Chin. Phys. B, 2015, 24(1): 014704.
[10] Multiferroic properties in terbium orthoferrite
Song Yu-Quan, Zhou Wei-Ping, Fang Yong, Yang Yan-Ting, Wang Liao-Yu, Wang Dun-Hui, Du You-Wei. Chin. Phys. B, 2014, 23(7): 077505.
[11] Probing the thermoelectric transport properties of n-type Bi2Te3 close to the limit of constitutional undercooling
Feng Song-Ke, Li Shuang-Ming, Fu Heng-Zhi. Chin. Phys. B, 2014, 23(11): 117202.
[12] Composite magnetic nanoparticles:Synthesis and cancer-related applications
Cai Ping, Chen Hong-Min, Xie Jin. Chin. Phys. B, 2014, 23(11): 117504.
[13] Electrical transport and thermoelectric properties of Ni-doped perovskite-type YCo1-xNixO3 (0≤ x ≤0.07) prepared by sol-gel process
Liu Yi, Li Hai-Jin, Zhang Qing, Li Yong, Liu Hou-Tong. Chin. Phys. B, 2013, 22(5): 057201.
[14] Al-doping-induced magnetocapacitance in the multiferroic CuCrS2
Liu Rong-Deng, Liu Yun-Tao, Chen Dong-Feng, He Lun-Hua, Yan Li-Qin, Wang Zhi-Cui, Sun Yang, Wang Fang-Wei. Chin. Phys. B, 2013, 22(2): 027507.
[15] Investigations of high-pressure and high-temperature behaviors of the newly-discovered willemite-Ⅱ and post-phenacite silicon nitrides
Chen Dong. Chin. Phys. B, 2013, 22(12): 126301.
No Suggested Reading articles found!