Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 114214    DOI: 10.1088/1674-1056/27/11/114214
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Carboxyl graphene oxide solution saturable absorber for femtosecond mode-locked erbium-doped fiber laser

Rui-dong Lv(吕瑞东)1, Lu Li(李璐)2, Yong-gang Wang(王勇刚)1, Zhen-dong Chen(陈振东)1, Si-cong Liu(刘思聪)1, Xi Wang(王茜)3, Jiang Wang(王江)1, Yong-fang Li(李永放)1
1 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China;
2 School of Science, Xi'an Institute of Posts and Telecommunications, Xi'an 710121, China;
3 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
Abstract  

The carboxyl-functionalized graphene oxide (GO-COOH) is a kind of unique two-dimensional (2D) material and possesses excellent nonlinear saturable absorption property and high water-solubility. In this paper, we prepare saturable absorber (SA) device by depositing GO-COOH nanosheets aqueous solution on a D-shaped fiber. The modulation depth (MD) and saturable intensity of the SA are measured to be 9.6% and 19 MW/cm2, respectively. By inserting the SA into the erbium-doped fiber (EDF) laser, a passively mode-locked EDF laser has been achieved with the spectrum center wavelength of 1562.76 nm. The pulse duration, repetition rate, and the signal-to-noise ratio (SNR) are 500 fs, 14.79 MHz, and 80 dB, respectively. The maximum average output power is measured to be 3.85 mW. These results indicate that the GO-COOH nanosheets SA can be used as a promising mode locker for the generation of ultrashort pulses.

Keywords:  fiber lasers      mode-locked pulse      nonlinear optical materials      carboxyl graphene oxide  
Received:  15 May 2018      Revised:  06 August 2018      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
Fund: 

Project supported by the Central University Special Fund Basic Research and Operating Expenses, China (Grant No. GK201702005), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2017JM6091), the National Natural Science Foundation of China (Grant No. 61705183), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2017TS011).

Corresponding Authors:  Yong-gang Wang     E-mail:  chinawygxjw@snnu.edu.cn

Cite this article: 

Rui-dong Lv(吕瑞东), Lu Li(李璐), Yong-gang Wang(王勇刚), Zhen-dong Chen(陈振东), Si-cong Liu(刘思聪), Xi Wang(王茜), Jiang Wang(王江), Yong-fang Li(李永放) Carboxyl graphene oxide solution saturable absorber for femtosecond mode-locked erbium-doped fiber laser 2018 Chin. Phys. B 27 114214

[1] Keller U 2003 Nature 424 831
[2] Brida D, Krauss G, Sell A and Leitenstorfer A 2014 Laser Photon. Rev. 8 409
[3] Fermann M E and Hartl I 2013 Nat. Photon. 7 868
[4] Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D and Wang F Q 2013 Sci. Rep. 3 2718
[5] Luo Z C, Xu W C, Song C X, Luo A P and Chen W C 2009 Chin. Phys. B 18 2328
[6] Duling I N 1991 Opt. Lett. 16 539
[7] Fermann M E and Hartl I 2013 Nat. Photon. 7 868
[8] Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
[9] Zhang H, Tang D Y, Zhao L M, Bao Q L and Loh K P 2009 Opt. Express 17 17630
[10] Yan P G, Lin R Y, Ruan S C, Liu A J, Chen H, Zheng Y Q, Chen S F, Guo C Y and Hu J G 2015 Sci. Rep. 5 8690
[11] Yang L Z, Yang Y and Wang J F 2016 Chin. Phys. B 25 124203
[12] Steinmeyer G, Sutter D H, Gallmann L, Matuschek N and Keller U 1999 Science 286 1507
[13] Sun Z P, Hasan T, Torrisi F, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M and Ferrari A C 2010 ACS Nano 4 803
[14] Ahmad H, Hassan N A, Aidit S N and Tiu Z C 2016 Opt. Laser Technol. 81 67
[15] Lau K Y, Abu Bakar M H, Muhammad F D, Latif A A, Omar M F, Yusoff Z and Mahdi M A 2018 Opt. Express 26 12790
[16] Zhao C J, Zhang H, Qi X, Chen Y, Wang Z T, Wen S C and Tang D Y 2012 Appl. Phys. Lett. 101 211106
[17] Shao H H, Liu Y M, Zhou X Y and Zhou G H 2014 Chin. Phys. B 23 107304
[18] Liu H, Luo A P, Wang F Z, Tang R, Liu M, Luo Z C, Xu W C, Zhao C J and Zhang H 2014 Opt. Lett. 39 4591
[19] Liu W J, Pang L H, Han H N, Shen Z W, Lei M, Teng H and Wei Z Y 2016 Photon. Res. 4 111
[20] Li L, Wang Y G and Wang X 2017 Laser Phys. 27 085104
[21] Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y and Zhang H 2018 Laser Photon. Rev. 12 1700229
[22] Lu L, Tang X, Cao R, Wu L M, Li Z J, Jing G H, Dong B Q, Lu S B, Li Y, Xiang Y J, Li J Q, Fan D Y and Zhang H 2017 Adv. Opt. Mater. 5 1700301
[23] Kim J W, Choi S Y, Jung B H, Yeom D I and Rotermund F 2013 Appl. Phys. Express 6 032704
[24] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2015 Opt. Mater. Express 5 2884
[25] Zhang H, Tang D Y, Zhao L M, Bao Q L, Loh K P, Lin B and Tjin S C 2010 Laser Phys. Lett. 7 591
[26] Hasan T, Sun Z P, Wang F Q, Bonaccorso F, Tan P H, Rozhin A G and Ferrari A C 2009 Adv. Mater. 21 3874
[27] Tan W D, Su C Y, Knize R J, Xie G Q, Li L J and Tang D Y 2010 Appl. Phys. Lett. 96 031106
[28] Cizmeciyan M N, Kim J W, Bae S, Hong B H, Rotermund F and Sennaroglu A 2013 Opt. Lett. 38 341
[29] Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L and Abramski K M 2015 Photon. Res. 3 119
[30] Huang P L, Lin S C, Yeh C Y, Kuo H H, Huang S H, Lin G R, Li L J, Su C Y and Cheng W H 2012 Opt. Express 20 2460
[31] Popa D, Sun Z P, Torrisi F, Hasan T, Wang F Q and Ferrari A C 2010 Appl. Phys. Lett. 97 203106
[32] Sun Z P, Popa D, Hasan T, Torrisi F, Wang F Q, Kelleher E J R, Travers J C, Nicolosi V and Ferrari A C 2010 Nano Res. 3 653
[33] Si Y and Samulski E T 2008 Nano Lett. 8 1679
[34] Li D, Müller M B, Gilje S, Kaner R B and Wallace G G 2008 Nat. Nanotechnol. 3 101
[35] Zhao F Y, Wang Y S, Wang Y G, Wang H S and Cai Y J 2017 Chin. Opt. Lett. 15 101402
[36] Duan L N, Wang H S, Bai J, Wang Y G, Wei L L, Chen Z D, Yu J, Wen J and Li Y 2017 Opt. Eng. 56 1
[37] Hernandez Y, Nicolosi V, Blighe F M, Hutchison J, Scardaci V, Ferrari A C and Coleman J N 2008 Nat. Nanotechnol. 3 563
[38] Li H P, Xia H D, Wang Z G, Zhang X X, Chen Y F, Zhang S J, Tang X G and Liu Y 2014 Chin. Phys. B 23 024209
[1] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[2] Optomechanical-organized multipulse dynamics in ultrafast fiber laser
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋). Chin. Phys. B, 2021, 30(11): 114203.
[3] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[4] The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静). Chin. Phys. B, 2019, 28(8): 084209.
[5] Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber
Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2019, 28(6): 064205.
[6] Generation of wide-bandwidth pulse with graphene saturable absorber based on tapered fiber
Ren-Li Zhang(张仁栗), Jun Wang(王俊), Mei-Song Liao(廖梅松), Xia Li(李夏), Pei-Wen Guan(关珮雯), Yin-Yao Liu(刘银垚), Yan Zhou(周延), Wei-Qing Gao(高伟清). Chin. Phys. B, 2019, 28(3): 034203.
[7] Mode-locked fiber laser with MoSe2 saturable absorber based on evanescent field
Ren-Li Zhang(张仁栗), Jun Wang(王俊), Xiao-Yan Zhang(张晓艳), Jin-Tian Lin(林锦添), Xia Li(李夏), Pei-Wen Kuan(关珮雯), Yan Zhou(周延), Mei-Song Liao(廖梅松), Wei-Qing Gao(高伟清). Chin. Phys. B, 2019, 28(1): 014207.
[8] Two-dimensional materials-decorated microfiber devices for pulse generation and shaping in fiber lasers
Zhi-Chao Luo(罗智超), Meng Liu(刘萌), Ai-Ping Luo(罗爱平), Wen-Cheng Xu(徐文成). Chin. Phys. B, 2018, 27(9): 094215.
[9] Femtosecond Tm-Ho co-doped fiber laser using a bulk-structured Bi2Se3 topological insulator
Jinho Lee(李珍昊), Ju Han Lee(李周翰). Chin. Phys. B, 2018, 27(9): 094219.
[10] MoS2 saturable absorber prepared by chemical vapor deposition method for nonlinear control in Q-switching fiber laser
Meng-Li Liu(刘孟丽), Yu-Yi OuYang(欧阳毓一), Huan-Ran Hou(侯焕然), Ming Lei(雷鸣), Wen-Jun Liu(刘文军), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2018, 27(8): 084211.
[11] Sb2Te3 mode-locked ultrafast fiber laser at 1.93 μm
Jintao Wang(王金涛), Jinde Yin(尹金德), Tingchao He(贺廷超), Peiguang Yan(闫培光). Chin. Phys. B, 2018, 27(8): 084214.
[12] Generation and evolution of multiple operation states in passively mode-locked thulium-doped fiber laser by using a graphene-covered-microfiber
Xiao-Fa Wang(王小发), Jun-Hong Zhang(张俊红), Xiao-Ling Peng(彭晓玲), Xue-Feng Mao(毛雪峰). Chin. Phys. B, 2018, 27(8): 084215.
[13] Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser
Zhen-Dong Chen(陈振东), Yong-Gang Wang(王勇刚), Lu Li(李璐), Rui-Dong Lv(吕瑞东), Liang-Lei Wei(韦良雷), Si-Cong Liu(刘思聪), Jiang Wang(王江), Xi Wang(王茜). Chin. Phys. B, 2018, 27(8): 084206.
[14] Linear and nonlinear optical analysis on semiorganic L-proline cadmium chloride single crystal
Mohd Anis, M I Baig, S S Hussaini, M D Shirsat, Mohd Shkir, H A Ghramh. Chin. Phys. B, 2018, 27(4): 047801.
[15] 1.5-MHz repetition rate passively Q-switched Nd: YVO4 laser based on WS2 saturable absorber
Xi Wang(王茜), Lu Li(李璐), Jin-Ping Li(李金萍), Yong-Gang Wang(王勇刚). Chin. Phys. B, 2017, 26(4): 044203.
No Suggested Reading articles found!