Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 018807    DOI: 10.1088/1674-1056/27/1/018807
Special Issue: SPECIAL TOPIC — New generation solar cells
SPECIAL TOPIC—New generation solar cells Prev   Next  

Key parameters of two typical intercalation reactions to prepare hybrid inorganic-organic perovskite films

Biao Shi(石标)1,2,3,4, Sheng Guo(郭升)1,2,3,4, Changchun Wei(魏长春)1,2,3,4, Baozhang Li(李宝璋)1,2,3,4, Yi Ding(丁毅)1,2,3,4, Yuelong Li(李跃龙)1,2,3,4, Qing Wan(万青)5, Ying Zhao(赵颖)1,2,3,4, Xiaodan Zhang(张晓丹)1,2,3,4
1 Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China;
2 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300071, China;
3 Key Laboratory of Optical Information Science and Technology of Ministry of Education, Tianjin 300071, China;
4 Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, China;
5 College of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  A star hybrid inorganic-organic perovskite material selected as an outstanding absorbing layer in solar cells benefits from multiple preparation techniques and excellent photoelectric characteristics. Among numerous synthetic processes, uniform, compact, and multi-stack perovskite thin films can be manufactured using vacuum deposition. During sequential vacuum deposition, the penetration ability of the organic molecules cannot be effectively controlled. In addition, the relationship between the thickness of the inorganic seeding layer and the organic molecule concentration for optimized devices using an evaporation-solution method is unclear. In this work, we prepared high-quality perovskite films by effectively controlling the penetration ability and chemical quantity of organic methyl ammonium iodide by monitoring the evaporation pressure and time. Thus, a device efficiency of over 15% was achieved with an all-vacuum prepared perovskite film. For the evaporation-solution method, we reacted different thicknesses of inorganic lead iodine with various concentrations of the organic molecule solution. The inorganic layer thickness and organic molecule concentration showed a linear relationship to achieve an optimum perovskite film, and an empirical formula was obtained. This work noted the key parameters of two intercalation reactions to prepare perovskite films, which paves a way to deliver a device that enables multi-layered structures, such as tandem solar cells.
Keywords:  perovskite solar cell      sequential vacuum deposition      evaporation-solution method      intercalation reaction  
Received:  06 October 2017      Revised:  24 November 2017      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
  88.40.fh (Advanced materials development)  
  91.60.Ed (Crystal structure and defects, microstructure)  
Fund: Project supported by the International Cooperation Project of the Ministry of Science and Technology, China (Grant No. 2014DFE60170), the National Natural Science Foundation of China (Grant Nos. 61474065 and 61674084), Tianjin Research Key Program of Application Foundation and Advanced Technology, China (Grant No. 15JCZDJC31300), Key Project in the Science & Technology Pillar Program of Jiangsu Province, China (Grant No. BE2014147-3), and the 111 Project, China (Grant No. B16027).
Corresponding Authors:  Xiaodan Zhang     E-mail:  xdzhang@nankai.edu.cn

Cite this article: 

Biao Shi(石标), Sheng Guo(郭升), Changchun Wei(魏长春), Baozhang Li(李宝璋), Yi Ding(丁毅), Yuelong Li(李跃龙), Qing Wan(万青), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹) Key parameters of two typical intercalation reactions to prepare hybrid inorganic-organic perovskite films 2018 Chin. Phys. B 27 018807

[1] Ponseca Jr C S, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J and Sundström V 2014 J. Am. Chem. Soc. 136 5189
[2] Stranks S, Eperon G, Grancini G, Menelaou C, Alcocer M, Leijtens T, Herz L, Petrozza A and Snaith H J 2013 Science 342 341
[3] Gao P, Grätzel M and Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448
[4] Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photon. 8 506
[5] Correa Baena J P, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson T J, Srimath Kandada A R, Zakeeruddin S M, Petrozza A, Abate A, Nazeeruddin M K, Grätzel M and Hagfeldt A 2015 Energy Environ. Sci. 8 2928
[6] Jesper Jacobsson T, Correa-Baena J P, Pazoki M, Saliba M, Schenk K, Grätzel M and Hagfeldt A 2016 Energy Environ. Sci. 9 1706
[7] Yang Z, Rajagopal A, Chueh C C, Jo S B, Liu B, Zhao T and Jen A K 2016 Adv. Mater. 28 8990
[8] Eperon G E, Leijtens T, Bush K A, Prasanna R, Green T, Wang J T, McMeekin D P, Volonakis G, Milot R L, May R, Palmstrom A, Slotcavage D J, Belisle R A, Patel J B, Parrott E S, Sutton R J, Ma W, Moghadam F, Conings B, Babayigit A, Boyen H, Bent S, Giustino F, Herz L M, Johnston M B, McGehee M D and Snaith H J 2016 Science 354 861
[9] Yin W J, Shi T and Yan Y 2014 Appl. Phys. Lett. 104 063903
[10] Kim J, Lee S H, Lee J H and Hong K H 2014 J. Phys. Chem. Lett. 5 1312
[11] Sutherland B R, Hoogland S, Adachi M M, Kanjanaboos P, Wong C T, McDowell J J, Xu J, Voznyy O, Ning Z, Houtepen A J and Sargent E H 2015 Adv. Mater. 27 53
[12] Malinkiewicz O, Lenes M, Brine H and Bolink H J 2012 RSC Adv. 2 3335
[13] Ono L K, Wang S, Kato Y, Raga S R and Qi Y 2014 Energy Environ. Sci. 7 3989
[14] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Grätzel M 2013 Nature 499 316
[15] Liu M, Johnston M B and Snaith H J 2013 Nature 501 395
[16] Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H, Liu Y, Li G and Yang Y 2013 J. Am. Chem. Soc. 136 622
[17] Das S, Yang B, Gu G, Joshi P C, Ivanov I N, Rouleau C M, Aytug T, Geohegan D B and Xiao K 2015 ACS Photonics 2 680
[18] Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y and Huang J 2014 Energy Environ. Sci. 7 2619
[19] Chen B, Bai Y, Yu Z, Li T, Zheng X, Dong Q, Shen L, Boccard M, Gruverman A, Holman Z and Huang J 2016 Adv. Energy Mater. 6 1601128
[20] Chen Z, Zhang C, Jiang X F, Liu M, Xia R, Shi T, Chen D, Xue Q, Zhao Y, Su S, Yip H and Cao Y 2017 Adv. Mater. 29 1603157
[21] Wang J, Wang N, Jin Y, Si J, Tan Z, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H and Huang W 2015 Adv. Mater. 27 2311
[22] Wu Y, Li J, Xu J Du Y, Huang L, Ni J, Cai H and Zhang J 2016 RSC Adv. 6 16243
[23] Lu H, Tian W, Cao F, Ma Y, Gu B and Li L 2016 Adv. Funct. Mater. 26 1296
[24] Shen L, Fang Y, Wang D, Bai Y, Deng Y, Wang M and Huang J 2016 Adv. Mater. 28 10794
[25] Bi D, Yi C, Luo J, Décoppet J, Zhang F, Zakeeruddin Shaik M, Li X, Hagfeldt A and Grätzel M 2016 Nat. Energy 1 16142
[26] Kakavelakis G, Maksudov T, Konios D, Paradisanos I, Kioseoglou G, Stratakis E and Kymakis E 2017 Adv. Energy Mater. 7 1602120
[27] Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J and Kanatzidis M G 2016 Nature 536 312
[28] You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N and Yang Y 2016 Nat. Nanotech. 11 75
[29] Lin Q, Armin A, Nagiri R C R, Burn P L and Meredith P 2014 Nat. Photon. 9 106
[30] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U and Seok S I 2017 Science 356 1376
[31] Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Graetzel M, Nazeeruddin M K and Bolink H J 2013 Nat. Photon. 8 128
[32] Malinkiewicz O, Roldán-Carmona C, Soriano A, Bandiello E, Camacho L, Nazeeruddin M K and Bolink H J 2014 Adv. Energy Mater. 4
[33] Teuscher J, Ulianov A, Muntener O, Gratzel M and Tetreault N 2015 ChemSusChem 8 3847
[34] Gao C, Liu J, Liao C, Ye Q, Zhang Y, He X, Guo X, Mei J and Lau W 2015 RSC Adv. 5 26175
[35] Zhou H, Chen Q and Yang Y 2015 MRS Bull. 40 667
[36] Mao J, Zhang H, He H, Lu H, Xie F, Zhang D, Wong K S and Choy W C H 2015 RSC Adv. 5 73760
[37] Chen C W, Kang H W, Hsiao S Y, Yang P F, Chiang K M and Lin H W 2014 Adv. Mater. 26 6647
[38] Hu H, Wang D, Zhou Y, Zhang J, Lv S, Pang S, Chen X, Liu Z, Padture N P and Cui G 2014 RSC Adv. 4 28964
[39] Bailie C D, Christoforo M G, Mailoa J P, Bowring A R, Unger E L, Nguyen W H, Burschka J, Pellet N, Lee J Z, Grätzel M, Noufi R, Buonassisi T, Salleo A and McGehee M D 2015 Energy Environ. Sci. 8 956
[40] Fu F, Feurer T, Jager T, Avancini E, Bissig B, Yoon S, Buecheler S and Tiwari A N 2015 Nat. Commun. 6
[41] Fu F, Feurer T, Weiss Thomas P, Pisoni S, Avancini E, Andres C, Buecheler S and Tiwari Ayodhya N 2016 Nat. Energy 2 16190
[42] Werner J, Weng C-H, Walter A, Fesquet L, Seif J P, Wolf S D, Niesen B and Ballif C 2015 J. Phys. Chem. Lett. 7 161
[43] Tao C, Neutzner S, Colella L, Marras S, Srimath Kandada A R, Gandini M, Bastiani M D, Pace G, Manna L, Caironi M, Bertarelli C and Petrozza A 2015 Energy Environ. Sci. 8 2365
[44] Ioakeimidis A, Christodoulou C, Lux-Steiner M and Fostiropoulos K 2016 J. Solid State Chem. 244 20
[45] Liu D, Gangishetty M K and Kelly T L 2014 J. Mater. Chem. A 2 19873
[46] Leyden M R, Ono L K, Raga S R, Kato Y, Wang S and Qi Y 2014 J. Mater. Chem. A 2 18742
[47] Chen Y, Chen T and Dai L 2015 Adv. Mater 27 1053
[48] Yang D, Yang Z, Qin W, Zhang Y, Liu S and Li C 2015 J. Mater. Chem. A 3 9401
[49] Werner J, Barraud L, Walter A, Bräuninger M, Sahli F, Sacchetto D, Tétreault N, Paviet-Salomon B, Moon S J, Allebé C, Despeisse M, Nicolay S, De Wolf S, Niesen B and Ballif C 2016 ACS Energy Lette ACS Energy Lett. 1 474
[50] Forgács D, Gil-Escrig L, Pérez-Del-Rey D, Momblona C, Werner J, Niesen B, Ballif C, Sessolo M and Bolink H J 2017 Adv. Energy Mater. 7 1602121
[51] Ahmad S, Kanaujia P K, Niu W, Baumberg J J and Vijaya Prakash G 2014 ACS Appl. Mater. Interfaces 6 10238
[52] Era M, Hattori T, Taira T and Tsutsui T 1997 Chem. Mater. 9 8
[53] Era M, Maeda K and Tsutsui T 1998 Thin Solid Films 331 285
[54] Shi B, Liu, B, Luo J, Li Y, Zheng C, Yao X and Zhang X 2017 Sol. Energy Mater. Sol. Cells 168 214
[55] Fu F, Kranz L, Yoon S, Löckinger J, Jäger T, Perrenoud J, Feurer T, Gretener C, Buecheler S and Tiwari A N 2015 Physica Status Solidi (a) 212 2708
[56] Mahmud M A, Elumalai N K, Upama M B, Wang D, Puthen-Veettil B, Haque F, Wright M, Xu C, Pivrikas A and Uddin A 2017 Sol. Energy Mater. Sol. Cells 167 87
[57] Yang M, Zhang T, Schulz P, Li Z, Li G, Kim D H, Guo N, Berry J J, Zhu K and Zhao Y 2016 Nat. Commun. 7 12305
[58] Zhou H, Chen Q, Li G, Luo S, Song T b, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
[59] Song T B, Chen Q, Zhou H, Luo S, Yang Y, You J and Yang Y 2015 Nano Energy 12 494
[60] Ono L K, Leyden M R, Wang S and Qi Y 2016 J. Mater. Chem. A 4 6693
[61] Wang S, Ono L K, Leyden M R, Kato Y, Raga S R, Lee M V and Qi Y 2015 J. Mater. Chem. A 3 14631
[62] Bryant D G P, Troughton J, et al. 2014 Adv. Mater. Interfaces 26 7499
[63] Dualeh A, Tétreault N, Moehl T, Gao P, Nazeeruddin M K and Grätzel M 2014 Adv. Funct. Mater. 24 3250
[64] Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X and You J 2017 Adv. Mater. 1703852
[65] Zhang T, Yang M, Zhao Y and Zhu K 2015 Nano Lett. 15 3959
[66] Im J H, Jang I H, Pellet N, Grätzel M and Park N G 2014 Nat. Nanotech. 9 927
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[3] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[4] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[5] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[6] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[7] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[8] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[9] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[10] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[11] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[12] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
[13] Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer
Shixin Hou(侯世欣), Biao Shi(石标), Pengyang Wang(王鹏阳), Yucheng Li(李玉成), Jie Zhang(张杰), Peirun Chen(陈沛润), Bingbing Chen(陈兵兵), Fuhua Hou(侯福华), Qian Huang(黄茜), Yi Ding(丁毅), Yuelong Li(李跃龙), Dekun Zhang(张德坤), Shengzhi Xu(许盛之), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2020, 29(7): 078801.
[14] SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华). Chin. Phys. B, 2020, 29(7): 078401.
[15] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
No Suggested Reading articles found!